# Accredited Calculus Credits Fast - Distance Calculus Calculus

If you wish to complete a Calculus course online, make sure you take this course from a**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

The free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

Distance Calculus @ Roger Williams University offers all of the main lower-division university-level calculus courses, fully accredited and transferable.

Here is a video about Transferring Academic Creditrs from Distance Calculus @ Roger Williams University:

## How Fast Can You Complete a Distance Calculus Course?

## Distance Calculus - Student Reviews

*Date Posted: May 3, 2020*

Review by: Andris H.

Courses Completed: Applied Calculus

Review: I found out from my MBA program that I needed to finish calculus before starting the MBA. They told me 3 weeks before term started! I was able to finish Applied Calculus from Distance Calculus. Definitely a great class. Thanks Distance Calculus!

Transferred Credits to: SUNY Stony Brook

*Date Posted: Jan 12, 2020*

Review by: Mark Neiberg

Courses Completed: Calculus I, Calculus II, Multivariable Calculus

Review: Curriculum was high quality and allowed student to experiment with concepts which resulted in an enjoyable experience. Assignment Feedback was timely and meaningful.

*Date Posted: Feb 28, 2020*

Review by: Karen N.

Courses Completed: Calculus I, Calculus II

Review: Awesome classes! I was really weak with Calculus, so I retook Calc 1 and kept going into Calc 2. I feel like I finally understood Calculus. The finals were pretty thorough, but not nearly as stressful as the blue book exams. I highly recommend these courses!

Transferred Credits to: Various

## Distance Calculus - Curriculum Exploration

### 1.07: Races

- M7: 1.07: Races:
- M7.1: 1.07 - Basics
- M7.1.a: 1.07.B1: The Race Track Principle
- M7.1.b: 1.07.B2: The Race Track Principle and differential equations
- M7.1.c: 1.07.B3: The Race Track Principle and Euler's method of faking the plot of the solution of a differential equation
- M7.1.d: 1.07.B4: Tangent lines and the Race Track Principle
- M7.2: 1.07 - Tutorials
- M7.2.a: 1.07.T1: Using Euler's method to fake the plot of f(x) given f ' (x) and one value of f(x)
- M7.2.b: 1.07.T2: Using the Race Track Principle to help to estimate roundoff error
- M7.2.c: 1.07.T3: If f''(x) is always positive then tangent lines run below the curve
- M7.3: 1.07 - Give It a Try
- M7.3.a: 1.07.G1: Versions of the Race Track Principle
- M7.3.b: 1.07.G2: Running Euler's faker
- M7.3.c: 1.07.G3: The Race Track Principle and differential equations
- M7.3.d: 1.07.G4: The error function Erf(x)
- M7.3.e: 1.07.G5: Round off
- M7.3.f: 1.07.G6: Calculating accurate values of ln(x)
- M7.3.g: 1.07.G7: Calculating accurate values of e^x
- M7.3.h: 1.07.G8: Euler's faker and the second derivative
- M7.3.i: 1.07.G9: Inequalities
- M7.3.j: 1.07.G10: The Law of the Mean
- M7.3.k: 1.07.G11: If f''(x) is never positive then tangent lines run above the curve; At points of inflection, the tangent line crosses the curve
- M7.4: 1.07 - Literacy