Growth

Authors ：Bill Davis，Horacio Porta and Jerry Uhl Producer ：Bruce Carpenter
Publisher ：Math Everywhere，Inc．Distributor \＆Translator：MathMonkeys，LLC

1．01 Growth

Give It a Try G2

Graphics Primitives

G．2）Global scale＊

G．2．a）

Look at：

Is this a good global scale plot of

$$
f(x)=x^{4}-10000000 x^{2} ?
$$

Why or why not？
If it is not a good global scale plot of $f(x)$ ，then give a good global scale plot of $f(x)$ ．
${ }^{\mathcal{V}}$ The dominant term is $\mathrm{x}^{\wedge} 4$ but the plot shows us－c＊
$x^{\wedge} 2$ parabola for some constant c ．We know that x^{\wedge} 4 is always positive but the plot if always negative．
For both reasons it is not a good reprasentative plot．
原 We need to find the roots for the equation to get a idea of what interval to use for the plot．
－$f($ 现 $)=$ 理 $^{4}-10000000$ 豕 2

$$
\triangle f(x)=\left(x^{2}-128 \cdot 5^{7}\right) \text { wat }^{2} \quad \text { Collect }
$$

$$
\begin{aligned}
& \square \bar{m}^{2}-128 \cdot 5^{7}=0 \\
& \triangle \mathbb{m}^{2}=\left(0+128 \cdot 5^{7}\right)^{\frac{1}{2}} \quad \text { Isolate } \\
& \triangle \text { 码 }=3162.27766016838 \text { Calculate }
\end{aligned}
$$

So we will choose about -4000 to 4000 ，I added a order of magnitutde to the range interval ot see the critical points and behavior to the left and right of the roots．

（佥 G．2．b）
Put

$$
f(x)=\frac{2 x^{6}+50 x^{2}}{x^{6}+3 x^{2}+1} .
$$

What do you say are the limiting values

$$
\lim _{x \rightarrow \infty} f(x)
$$

and

$$
\lim _{x \rightarrow-\infty} f(x) ?
$$

The global scale behavior of both numerator and denominator is $x^{\wedge} 6$ ，so we have both limits are 0 ．
组 RC：09／03／12：Incorrect．Your graph is showing a different limit，between 0 and 5 ．What it is？How about a dominant term analysis？

(
What do you say is the limiting value

$$
\lim _{x \rightarrow \infty} \frac{x^{9}+4 e^{0.6 x}}{3 x^{12}+2 e^{0.6 x}} ?
$$

Illustrate with a plot.
\bigcirc The global scale of the numerator is dominated by e ${ }^{\wedge} 0.6 \mathrm{x}$. The gloval scale of the denominator is also e ${ }^{\wedge} 0.6 \mathrm{x}$ (exponential terms dominate power terms). So we have both cancel and the limit is equal to zero.
(₹ RC: 09/03/12: Incorrect reasoning Your graph will show a different limit if you go out to the right far enough - around $x=200$ or so. What it is? How about a dominant term analysis?

This electonic material is © 2008 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.
For more information,
visit www.livemath.com
\square

