Authors : Bill Davis, Horacio Porta and Jerry Uhl Producer : Bruce Carpenter
Publisher : Math Everywhere, Inc. Distributor \& Translator: MathMonkeys, LLC
1.05 Using The Tools

Give It a Try G10

DD: 1/17/13: A couple to fix.

DD: $1 / 16 / 13$: More to do.
DD: 1/15/13: A few to reconsider.
Graphics Primitives
This LiveMath Independence Declaration allows the derivatives to be computed as intended in this notebook.
\leftrightarrows The variables ($a, b, c, x, y, t, r, k, s, z, A, w, D, S, v$) are independent of each other
G.10) Other max-min problems
G.10.a)

Explain the statement:
Of all rectangles with a fixed perimeter, the square measures out to the largest area.
$\left.{ }^{(}\right)$Tip:
(${ }^{-}$The sides of the rectangle are x and y units long.

$$
\begin{aligned}
& \operatorname{area}(x, y)=x y \\
& 2 x+2 y=P
\end{aligned}
$$

where P is the given perimeter.
\bigcirc MR, 1/15: OK: Let Perimeter=P
$2 x+2 y=P$
MR, 1/15: Solve for y
$\square 2 x+2 y=P$
$\Delta y=\frac{1}{2}(-2 x+P) \quad$ Isolate

MR, $1 / 15$: Plug in to clear y from the function.

area $(x, y)=x y$
$\square f(x)=x y$
$\triangle f(x)=\frac{1}{2} x(-2 x+P) \quad$ Substitute
$\triangle f(x)=-x^{2}+\frac{1}{2} P x \quad$ Expand
MR, 1/15: Take the derivative to find the maximum:
$\square f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(-x^{2}+\frac{1}{2} P x\right)$
$\triangle f^{\prime}(x)=-2 x+\frac{1}{2} P \quad$ Simplify
$\square 0=-2 x+\frac{1}{2} P$
$\triangle x=\frac{1}{4} P \quad$ Isolate
\mathcal{F} MR, $1 / 15$: This tells me we 're at a maximum when one of the sides is $1 / 4$ the total perimter, or when we 've got a square.
F DD: $1 / 16 / 13$: Well, you should solve for y and show that it is also $\mathrm{P} / 4$.

MR, 1/17: OK: Let Perimeter=P
$\square 2 x+2 y=P$
MR, 1/15: Solve for x
$\square 2 x+2 y=P$

$$
\triangle x=\frac{1}{2}(-2 y+P) \quad \text { Isolate }
$$

(MR, 1/15: Plug in to clear x from the function.
\square area $(x, y)=x y$
$\square f(y)=x y$
$\triangle f(y)=\frac{1}{2} y(-2 y+P) \quad$ Substitute
$\triangle f(y)=-y^{2}+\frac{1}{2} P y \quad$ Expand
MR, $1 / 15$: Take the derivative to find the maximum:
$\square f^{\prime}(y)=\frac{\mathrm{d}}{\mathrm{d} y}\left(-y^{2}+\frac{1}{2} P y\right)$

$$
\triangle f^{\prime}(y)=-2 y+\frac{1}{2} P \quad \text { Simplify }
$$

$$
\square 0=-2 y+\frac{1}{2} P
$$

$\triangle y=\frac{1}{4} P \quad$ Isolate
MR, 1/15: These two case theories tell me we 're at a maximum when one of the sides is $1 / 4$ the total perimter, or when we 've got a square.
(
DD: 1/15/13: Let 's not set P to a number. Let 's let P remain an unspecified constant. That 's the only way to solve the problem in all its generality.
Please redo this.
$2 x+2 y=16$
(${ }^{\circ}$ MR, 12/19: Solve for y .

$$
\begin{gathered}
\Delta y=\frac{1}{2}(-2 x+16) \quad \text { Isolate } \\
\Delta y=-x+8 \quad \text { Expand }
\end{gathered}
$$

MR, 12/19: Plug in to clear y from the function.
\square area $(x, y)=x y$
$\square f(x)=x y$
$\triangle f(x)=x(-x+8) \quad$ Substitute
$\triangle f(x)=-x^{2}+8 x \quad$ Expand
$\square f(x)=-x^{2}+8 x$
$\triangle f(x)=7 \quad$ Substitute
$\square x=7$

- $y=-x^{2}+8 x$

MR, 12/19: This plot represents where x is one side of a rectangle with perimeter 16 and $f(x)$ is that
rectangle 's area.
MR, 12/19: Find the maximum using the derivative.
$f(x)=-x^{2}+8 x$
$\square f^{\prime}(x)=-2 x+8$
$\square 0=-2 x+8$
$\triangle x=4 \quad$ Isolate
MR, 12/19: The maximum area occurs when $x=4$. At this point, the other side is 4 , which is a square.

This electonic material is © 2008 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.
For more information,
visit www.livemath.com

$\square ?=$?

