# Calculus 4 - Multivariable Calculus - Vector Calculus Fall 2020 Online Calculus Academic Credits

Distance Calculus @ Roger Williams University operates 24/7/365 with open enrollment outside of the traditional academic calendar. We offer all of our courses during the Summer, Fall, Winter, before semesters traditionally start, after semesters start, during vacation weeks ... I think you get the idea :)M

If you wish to complete a Calculus 4 course online, make sure you take this course from a

**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

The free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

There are more than a few actual colleges/universities offering Calculus 4 - Multivariable Calculus - Vector Calculus courses online. Be careful as you investigate these courses - they may not fit your needs for actual course instruction and timing. Most require you enroll and engage your course during their standard academic semesters. Most will have you use a publisher's "automated textbook" which is .... um .... well, if you like that kind of thing, then you have a few options over there at those schools.

Distance Calculus is all about real university-level calculus courses - that's all we do! We have been running these courses for 20+ years, so we know how to get students through the these courses fast fast fast!

Here is a video about earning real academic credits in Calculus 4 from Distance Calculus @ Roger Williams University:

## Earning Real Academic Credits for Calculus

## Applied Calculus vs Calculus I

## Distance Calculus - Student Reviews

*Date Posted: Aug 16, 2020*

Review by: Jennifer S.

Courses Completed: Calculus I

Review: The course was intense and required a lot of hard work. Professors ready available to assist when needed. Professors presented and explained materials/course work in detail and provided explanations and resources.

Transferred Credits to: University of New Haven, West Haven, CT

*Date Posted: May 21, 2020*

Review by: Chester F.

Courses Completed: Calculus I, Calculus II

Review: I did not enjoy Calculus I at my school. I retook Calculus I, and then Calculus II, over the summer via Distance Calculus and it was awesome. I started my sophomore year back on track and ready for my physics classes. I struggled with the MathLive software but I guess it was alright.

Transferred Credits to: University of North Carolina

*Date Posted: Jan 13, 2020*

Review by: Joe

Courses Completed: Calculus II

Review: This is the most interactive and productive online course I have ever taken. I had taken calculus before but never understood some of the underlying concepts until I took this course. If you want to really learn calculus in a way that will stay with you for the rest of your life, take this course.

Transferred Credits to: The college of New Jersey

## Distance Calculus - Curriculum Exploration

### VC.06 - Sources

- V6: VC.06 - Sources:
- V6.1: VC.06 - Sources - Basics
- V6.1.a: VC.06.B1: Using a 2D integral to measure flow across closed curves
- V6.1.b: VC.06.B2: Sources, sinks, and the divergence of a vector field
- V6.1.c: VC.06.B3: Flow-across-the-curve measurements in the presence of singularities
- V6.2: VC.06 - Sources - Tutorials
- V6.2.a: VC.06.T1: The pleasure of calculating path integrals when mixed partials equation = 0
- V6.2.b: VC.06.T2: Using a 2D integral to measure flow along closed curves
- V6.2.c: VC.06.T3: Rotation (swirl) of a vector field
- V6.2.d: VC.06.T4: Summary of main ideas.
- V6.3: VC.06 - Sources - Give It a Try
- V6.3.a: VC.06.G1: Sources, sinks and swirls
- V6.3.b: VC.06.G2: Singularity sources, sinks and swirls
- V6.3.c: VC.06.G3: Agree or disagree
- V6.3.d: VC.06.G4: Flow calculations in the presence of singularities
- V6.3.e: VC.06.G5: 2D electric fields, dipole fields, and Gauss's law in physics
- V6.3.f: VC.06.G6: The Laplacian and steady-state heat
- V6.3.g: VC.06.G7: Calculating path integrals in the presence of singularities
- V6.3.h: VC.06.G8: Water and electricity
- V6.3.i: VC.06.G9: Is parallel flow always irrotational?
- V6.3.j: VC.06.G10: Spin fields
- V6.4: VC.06 - Sources - Literacy