Authors : Bill Davis, Horacio Porta and Jerry Uhl Producer : Bruce Carpenter
Publisher : Math Everywhere, Inc. Distributor \& Translator: MathMonkeys, LLC

1.01 Growth

Give It a Try G2

Graphics Primitives

G.2) Global scale*

G.2.a)

Look at:
N Ch 19.01.2013 A good global scale plote for this
graph looks like $\mathrm{f}(\mathrm{x})=\mathrm{x} 4$
RC : $01 / 21 / 13$: Good
y

Is this a good global scale plot of

$$
f(x)=x^{4}-10000000 x^{2} ?
$$

Why or why not?

If it is not a good global scale plot of $f(x)$, then give a good global scale plot of $f(x)$.
O

- $f(2 x)=x^{2}-100000002^{2}$
$y=x^{4}$

回
-42000 ... $42000=$ left...right Stretch to Fit -
$-1.7 \times 10^{16} \ldots . .1 .7 \times 10^{16}=$ bottom...top cropping Moderately

Graph Building Blocks
M- Curve at $(x, f[x])$ where $x=$ left ... right with a
heavy $\boldsymbol{\nabla}$ line, colored Red $\boldsymbol{\nabla}$.
In Curve at (x, y) where $x=$ left \ldots right with a dashed
line, colored Blue $\boldsymbol{\nabla}$.
G.2.b)

Put

$$
f(x)=\frac{2 x^{6}+50 x^{2}}{x^{6}+3 x^{2}+1}
$$

What do you say are the limiting values

$$
\lim _{x \rightarrow \infty} f(x)=2
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=2
$$

$\square \frac{2 x^{6}}{x^{6}}$
$\triangle \frac{2 x^{6}}{x^{6}}=2 \quad$ Simplify

- $y=f(x)$

$-46 \ldots . .46=$ left...right	Stretch to Fit -
$1.7 . .2 .3=$ bottom...top	cropping Moderately $\boldsymbol{\nabla}$

Graph Building Blocks

In-Curve at (x, y) where $x=$ left ... right with a normal line, colored Black $\boldsymbol{\nabla}$.

RC: $01 / 21 / 13$: Your y-axis scale is too large to
show $\mathrm{y}=2$ as the limiting value. Your scale should be something like 1.5 2.5
N Ch 22.01.2013 Fixed it.
RC: 01/22/13: Good
G.2.c)

What do you say is the limiting value

$$
\lim _{x \rightarrow \infty} \frac{x^{9}+4 e^{0.6 x}}{3 x^{12}+2 e^{0.6 x}}=2
$$

Illustrate with a plot.

RC: 01/22/13: good
$y=f(x)$

71 ... 119 = left...right Stretch to Fit $\boldsymbol{\nabla}$
-0.5 ... $2.5=$ bottom...top cropping Moderately
Graph Building Blocks
In-Curve at (x, y) where $x=$ left ... right with a normal line, colored Black $\boldsymbol{\nabla}$.

RC: 01/21/13: Incorrect. Go out farther to the right on your graph. What do your computations below have to do with this graph?
$\square \frac{4 e^{0.6 \text { x }}}{2 e^{0.6 x_{x}}}$

(RC: 01/22/13: You don 't need the "power part" since the exponentials dominate.
(佥) "Power part"
$\square \frac{\text { 2" }^{9}}{3 \sum^{12}}$

$\square \lim _{x \rightarrow \infty} \frac{1}{3 x_{2}^{3}}=0$
$\stackrel{(}{ })$ N Ch 22.01.2013 Thank God! I was really uncomfortable with that zero limit. My problem is I ' m terrified of limits. I 'm still not sure what they are.
$\mathcal{E}^{(}$So, for small $\mathrm{x}, \mathrm{f}(\mathrm{x})$ tends to 0
$\square \frac{50^{9}+4 e^{0.6 \cdot 50}}{3 \cdot 50^{12}+2 e^{0.6 \cdot 50}}$
$\triangle \frac{50^{9}+4 e^{0.6 \cdot 50}}{3 \cdot 50^{12}+2 e^{0.6 \cdot 50}}=2.72502898699495 \times 10^{-6}$
Calculate
\Leftrightarrow then, for large x , it goes up to 2
$\square \frac{100^{9}+4 e^{0.6 \cdot 100}}{3 \cdot 100^{12}+2 e^{0.6 \cdot 100}}$
$\triangle \frac{100^{9}+4 e^{0.6 \cdot 100}}{3 \cdot 100^{12}+2 e^{0.6 \cdot 100}}=1.97407104287832 \quad$ Calculate
(${ }^{-}$Am I right?
G.2.d)

What do you say is the limiting value

$$
\lim _{x \rightarrow \infty} \frac{3 x^{8}-123 \cos (x)-6 x^{2}}{e^{0.4 x}}=0
$$

Illustrate with a plot.

RC: $01 / 21 / 13$: Your y-axis scale is too large to show $\mathrm{y}=0$ as the limiting value.
N Ch 22.01.2013 Fixed it.

- $y=f(x)$

$80 . . .1080=$ left...right \quad Stretch to Fit $\boldsymbol{\nabla}$
$-1 . . .1=$ bottom...top cropping Moderately $\mathbf{~}$

Graph Building Blocks

M-Curve at (x, y) where $x=$ left ... right with a
heavy $\boldsymbol{\nabla}$ line, colored Red $\boldsymbol{\nabla}$.
N Ch 19.01.2013 a limit here depends on an
exponent in the denominator
RC: 01/22/13: Good
G.2.e)

What do you say is the limiting value

$$
\lim _{x \rightarrow \infty} e^{-0.8 x}\left(1+5 x^{6}\right)=0
$$

Illustrate with a plot.

- $y=f(x)$

RC: $01 / 21 / 13$: Your y-axis scale is too large to show $\mathrm{y}=0$ as the limiting value.
RC: 01/22/13: Good
N Ch 22.01.2013 Fixed it.
G.2.f)
(What do you say is the limiting value

$$
\lim _{x \rightarrow \infty} \frac{3 e^{-x}-e^{-3 x}}{e^{-3 x}+e^{-x}}=3
$$

Illustrate with a plot.

- $y=f(x)$

$$
\triangle \frac{3 e^{-x}-e^{-3 x}}{e^{-3 x}+e^{-x}}=\frac{3 e^{-x+3 x}-e^{-3 x+3 x}}{e^{3 x}\left(e^{-3 x}+e^{-x}\right)} \text { Simplify }
$$

$$
\triangle \frac{3 e^{-x}-e^{-3 x}}{e^{-3 x}+e^{-x}}=\frac{3 e^{2 x}-1}{e^{3 x}\left(e^{-3 x}+e^{-x}\right)} \quad \text { Simplify }
$$

$$
\triangle \frac{3 e^{-x}-e^{-3 x}}{e^{-3 x}+e^{-x}}=\frac{3 e^{2 x}-1}{e^{\frac{1}{1}(-x)+\frac{1}{1}(3 x)}+e^{\frac{1}{1}(-3 x)+\frac{1}{1}(3 x)}} \quad \text { Expand }
$$

$$
\triangle \frac{3 e^{-x}-e^{-3 x}}{e^{-3 x}+e^{-x}}=\frac{3 e^{2 x}-1}{e^{-x+3 x}+e^{-3 x+3 x}} \quad \text { Simplify }
$$

$$
\triangle \frac{3 e^{-x}-e^{-3 x}}{e^{-3 x}+e^{-x}}=\frac{3 e^{2 x}-1}{e^{2 x}+1} \quad \text { Simplify }
$$

$$
\square \frac{3 e^{2 x}}{e^{2 x}}
$$

$$
\triangle \frac{3 e^{2 x}}{e^{2 x}}=3 \quad \text { Simplify }
$$

RC: 01/21/13: Good

Rank the following functions in order of dominance as $x \rightarrow \infty$:

$$
0.0001 \mathrm{x}^{24}, 0.0004 e^{0.01 \mathrm{x}}, 89 \mathrm{x}^{2}, \sqrt{\mathrm{x}}, 17 \mathrm{x}, 0.08 \mathrm{x}^{3}, 0.0000013 e^{2 \mathrm{x}}, 100 \mathrm{x}^{0.4}
$$

N Ch 19.01.2013-0.0000013 $e^{2 \mathrm{x}}, 0.0004 e^{0.01 \mathrm{x}}$, $0.0001 \mathrm{x}^{24}, 0.08 \mathrm{x}^{3}, 89 \mathrm{x}^{2}, 17 \mathrm{x}, \sqrt{\mathrm{x}}, 100 \mathrm{x}^{0.4}$
RC: 01/21/13: Good
G.2.h)

Plot

$$
f(x)=\frac{2 x^{4}-40 x+1}{x^{2}+x+12}
$$

in global scale.
What simpler function mimicks the global scale behavior of $f(x)$?
Give a number b so that $f(x)$ is in its global scale behavior for $|x|>b$.

RC: $01 / 21 / 13: b=2$ is probably sufficient.

N Ch 22.01.2013 may I choose $\mathrm{b}=8$? $\mathrm{Or} \mathrm{b}=2$ is enough?
RC: 01/22/13: You may choose any number past $\mathrm{b}=1$ or so. The problem is a little vague (on purpose)

- $y=f(x)$

$$
\begin{array}{|l|}
\hline-200 \ldots 200=\text { left...right } \quad \text { Stretch to Fit } \nabla \\
-2500 . .2500=\text { bottom...top cropping Moderately } \nabla
\end{array}
$$

Graph Building Blocks

M- Curve at (x, y) where $x=$ left.. right with a normal line, colored Blue \boldsymbol{v}.

This electonic material is © 2008 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.
For more information,
visit www.livemath.com

