

Authors: Bill Davis, Horacio Porta and Jerry Uhl Producer: Bruce Carpenter Publisher: Math Everywhere, Inc. Distributor & Translator: MathMonkeys, LLC

1.01 Growth

Give It a Try G2

Graphics Primitives

Look at:

Is this a good global scale plot of

$$f(x) = x^4 - 10000000 x^2$$
?

Why or why not?

If it is not a good global scale plot of f(x), then give a good global scale plot of f(x).

The dominant term is x^4 but the plot shows us -c* x^2 parabola for some constant c. We know that x^4 4 is always positive but the plot if always negative. For both reasons it is not a good representative plot.

We need to find the roots for the equation to get a idea of what interval to use for the plot.

$$f(\mathbf{x}) = \mathbf{x}^4 - 10000000 \mathbf{x}^2$$

$$\triangle f(\mathbf{x}) = (\mathbf{x}^2 - 128.5^7) \mathbf{x}^2 \quad Collect$$

$$\int \int 3e^{2} - 128.5^{7} = 0$$

$$\triangle \mathbf{x} = (0 + 128.5^7)^{\frac{1}{2}} \quad Isolate$$

- So we will choose about -4000 to 4000, I added a order of magnitutde to the range interval ot see the critical points and behavior to the left and right of the roots.
- RC: 09/03/12: Good

₹ G.2.b)

$$f(x) = \frac{2 x^6 + 50 x^2}{x^6 + 3 x^2 + 1}.$$

What do you say are the limiting values

$$\lim_{x \to \infty} f(x)$$

and

$$\lim f(x)$$
?

$$x \to -\infty$$

- The global scale behavior of both numerator and denominator is x^6, so we have both limits are 0.
- RC: 09/03/12: Incorrect. Your graph is showing a different limit, between 0 and 5. What it is? How about a dominant term analysis?

•
$$f(x) = \frac{2x^6 + 50x^2}{x^6 + 3x^2 + 1}$$

₹ G.2.c)

 \blacksquare What do you say is the limiting value

$$\lim_{x \to \infty} \frac{x^9 + 4e^{0.6x}}{3x^{12} + 2e^{0.6x}}?$$

Illustrate with a plot.

The global scale of the numerator is dominated by e ^0.6x. The gloval scale of the denominator is also e ^0.6x (exponential terms dominate power terms). So we have both cancel and the limit is equal to zero.

RC: 09/03/12: Incorrect reasoning Your graph will show a different limit if you go out to the right far enough - around x=200 or so. What it is? How about a dominant term analysis?

$$f(\mathbf{x}) = \frac{\mathbf{x}^9 + 4e^{0.6\mathbf{x}}}{3x^{12} + 2e^{0.6\mathbf{x}}}$$

This electonic material is © 2008 by MathEverywhere, LLC, licensed to MathMonkeys, LLC. For more information, visit www.livemath.com

