Growth

Authors ：Bill Davis，Horacio Porta and Jerry Uhl Producer ：Bruce Carpenter
Publisher ：Math Everywhere，Inc．Distributor \＆Translator：MathMonkeys，LLC

1．03 Instantaneous Growth Rates

Give It a Try G6

DD：1／9／13：Good．Notebook is complete．

DD： $1 / 6 / 13$ ：Still a few to fix．
DD： $1 / 1 / 13$ ：Still more to do．
DD：12／28／12：A few to reconsider．
Experience with the starred problems will be especially beneficial for understanding later lessons．
Graphics Primitives
G．6）Up and down，maximum and minimum＊
射 G．6．a）
（ $\because=$ ）You can tell what happens to

$$
f(x)=x^{3}-3 x^{2}
$$

as x leaves $\mathrm{x}=2.6$ and advances a little bit by $\mathrm{f}^{\prime}(2.6)$ ：
\bigcirc
$\square f(3 x)=x_{z}^{3}-3 x^{2}$
$\square f^{\prime}(\vec{x})={ }_{x=3}\left[\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right.$
$\Delta f^{\prime}(\overrightarrow{2 x})={ }_{x=3}\left[\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{3}-3 x^{2}\right) \quad\right.$ Substitute

$$
\triangle f^{\prime}(\text { 㟋 })={ }_{x=a}\left[3 x^{2}-6 x \quad\right. \text { Simplify }
$$

$$
\triangle f^{\prime}(x)=3 x^{2}-62 x \quad \text { Simplify }
$$

$\square f^{\prime}(2.6)$
$\triangle f^{\prime}(2.6)=3 \cdot 2.6^{2}-6 \cdot 2.6 \quad$ Substitute

$$
\triangle f^{\prime}(2.6)=4.68 \quad \text { Simplify }
$$

（ ${ }^{(1)}$ Positive．
This means $\mathrm{f}(\mathrm{x})$ increases as x leaves 2.6 and advances a little bit．
Check with a plot：
O

$2.6 \ldots 2.8=$ left...right Stretch to Fit $\boldsymbol{\nabla}$
$-2.8 . . .-1.5=$ bottom...top cropping Moderately -
Graph Building Blocks
η-Curve at $(x, f[x])$ where $x=$ left ... right with a
normal line, colored Black.

Yep.

As x leaves 2.6 and advances a little bit, $f(x)$ goes up.
Stay with $f(x)=x^{3}-3 x^{2}$ and look at:
O
$\square f(x)=x^{2}-3 x^{2}$
$\square f^{\prime}\left(\mathfrak{x}^{2}\right)={ }_{x=\rrbracket}\left[\frac{\mathrm{d}}{\mathrm{d} x} f(x)\right.$
$\triangle f^{\prime}(\overrightarrow{a z})={ }_{x=\sharp}\left[\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3}-3 x^{2}\right) \quad\right.$ Substitute
$\Delta f^{\prime}(\overrightarrow{z E})={ }_{x=3}\left[3 x^{2}-6 x \quad\right.$ Simplify

$\square f^{\prime}(1.7)$

$$
\begin{gathered}
\triangle f^{\prime}(1.7)=3 \cdot 1.7^{2}-6 \cdot 1.7 \quad \text { Substitute } \\
\triangle f^{\prime}(1.7)=-1.53 \quad \text { Simplify }
\end{gathered}
$$

As x leaves $\mathrm{x}=1.7$ and advances a little bit, does

$$
f(x)=x^{3}-3 x^{2}
$$

go up or down?
Confirm with a plot.
MR, 12/13: Since the result is negative, x will go
down by a little bit as it leaves 1.7 .
$\square f\left(3 x^{2}\right)=x^{3}-3 x^{2}$
$\square f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)$
$\triangle f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3}-3 x^{2}\right) \quad$ Substitute
$\triangle f^{\prime}(x)=-6 x+3 x^{2} \quad$ Expand

- $f(x)=x^{2}-3 x^{2}$
- $f^{\prime}(\overrightarrow{y t})=-65+3 x^{2}$
- $y_{1}=f(x)$
- $y_{2}=f^{\prime}(x)$

 $\mathrm{f}(\mathrm{x})$ (red) is goind down.
DD: 12/28/12: Good.

G.6.b)

This time go with

$$
f(x)=x^{4}-4 x^{2}
$$

and look at:
0 㢄
$\square f(x)=x^{4}-4 x^{2}$
$\square f^{\prime}(\overrightarrow{x t})={ }_{x=\rightrightarrows}\left[\frac{\mathrm{d}}{\mathrm{d} x} f(x)\right.$

$$
\triangle f^{\prime}\left(\frac{2 x}{}\right)=_{x=a t}\left[\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{4}-4 x^{2}\right) \quad\right. \text { Substitute }
$$

$$
\triangle f^{\prime}(\text { 码 })={ }_{x=3}\left[4 x^{3}-8 x \quad\right. \text { Simplify }
$$

$\square f^{\prime}(1.3)$
$\triangle f^{\prime}(1.3)=4 \cdot 1.3^{3}-8 \cdot 1.3 \quad$ Substitute
$\triangle f^{\prime}(1.3)=-1.612 \quad$ Simplify
What happens to $f(x)$ as x leaves $x=1.3$ and increases a little bit?
What happens to $\mathrm{f}(\mathrm{x})$ as x leaves 1.3 and decreases a little bit?
What happens to $\mathrm{f}(\mathrm{x})$ as x leaves 2.6 and increases a little bit?
What happens to $\mathrm{f}(\mathrm{x})$ as x leaves 2.6 and decreases a little bit?
\bigcirc MR, 12/13. OK, I 'll solve algrebraically.
$\square f\left(x_{x}\right)=x^{4}-4 x^{2}$
$\square f^{\prime}(\vec{x})={ }_{x=3}\left[\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right.$
$\triangle f^{\prime}(\mathbb{x})={ }_{x=3}\left[\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{4}-4 x^{2}\right) \quad\right.$ Substitute
$\left.\triangle f^{\prime}(\overrightarrow{y t})\right)_{x=3}\left[4 x^{3}-8 x \quad\right.$ Simplify

```
\(\square f^{\prime}(2.6)\)
\[
\Delta f^{\prime}(2.6)=4 \cdot 2.6^{3}-8 \cdot 2.6 \quad \text { Substitute }
\]
\[
\triangle f^{\prime}(2.6)=49.504 \quad \text { Simplify }
\]
\(\square\) ?
```

What happens to $f(x)$ as x leaves $x=1.3$ and increases a little bit?
(응 MR, 12/13: Since $f^{\prime}(1.3)$ is negative, $f(x)$ will decrease leaving $x=1.3$.
(${ }^{\circ}$ What happens to $\mathrm{f}(\mathrm{x})$ as x leaves 1.3 and decreases a little bit?
(E_{S} MR, 12/13: The opposite of the above case is true. Since $f^{\prime}(1.3)$ is negative, when $f(x)$ moves to the left of 1.3 , it will increase.
(\mathcal{O} What happens to $f(x)$ as x leaves 2.6 and increases a little bit?
(邦 MR, 12/13: At $\mathrm{f}^{\prime}(\mathrm{x}), 2.6=49.504$. Since $\mathrm{f}^{\prime}(2.6)$ is positive, $\mathrm{f}(\mathrm{x})$ will increase leaving $\mathrm{x}=2.6$.
(${ }^{8}$ What happens to $\mathrm{f}(\mathrm{x})$ as x leaves 2.6 and decreases a little bit?
${ }_{F} \mathrm{MR}, 12 / 13$: The opposite of the above case is true. Since $f^{\prime}(2.6)$ is positive, when $f(x)$ moves to the left of 2.6 , it will decrease.
(结 DD: 12/28/12: Good.
(
You 've got a function $f(x)$ and a point $x=a$.
If $\mathrm{f}^{\prime}(\mathrm{a})>0$, is it possible that $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{x})$ for all other x ' s ?
Why?
MR, $1 / 6$: Since $f^{\prime}(a)$ is positive, when x moves to the right of a, then $f(x)$ will increase and when x moves to the left of a, then $f(x)$ will decrease. It is not possible for $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{x})$ for all other x 's. If this were the case, $\mathrm{f}(\mathrm{x})$ would be at its global minimum and $\mathrm{f}^{\prime}(\mathrm{a})$ would $=0$.

DD: 1/9/13: Good.

MR, $1 / 2$: Thanks for the video. Since $f^{\prime}(a)$ is positive, when $\mathrm{f}(\mathrm{x})$ moves to the right it will increase and when it moves to the left it will decrease. It is not possible for $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{x})$ for all other x 's. If this were the case, $\mathrm{f}(\mathrm{x})$ would be at its global minimum and $\mathrm{f}^{\prime}(\mathrm{a})$ would $=0$.
DD: $1 / 6 / 13$: You don 't mean " $f(x)$ moves to the right." What you mean is when x moves to the right of a, then $f(x)$ will increase. Etc. Please change this one and the others below.
MR, 12/13: Genearlly, the answer to each of these questions is yes since x could be an infinite number
of inputs.
\bigcirc MR, 12/13. To wrap my mind around this, I 'll put it in more concrete terms. Imagine that $f^{\prime}(1)=1$. This indicates that at $f(1), f(x)$ is increasing, but moving to the left, $\mathrm{f}(\mathrm{x})$ is decreasing. So, yes, it is possible for $\mathrm{f}(\mathrm{a})$ to be less than or equal to $\mathrm{f}(\mathrm{x})$.
(DD: 12/28/12: Read this more carefully. Basically, you 're being asked this: if $f^{\prime}(a)>0$ is it possible that $\mathrm{f}(\mathrm{a})$ is the minimum value of $\mathrm{f}(\mathrm{x})$. That would be the case if $f(a) \leq f(x)$ for all other \underline{x} 's. Discussing a specific example is not a bad thing, but in the end you must answer the question is all its generality and give a reasonable argument to support your answer.

MR, $12 / 29$: In this case, $f^{\prime}(a)$ is always greater than
0 , and the minimum on this interval $-10 \leq x \leq 10$ occurs where $x=-10$. In this case, yes, it is possible for $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{x})$ (in this case $\mathrm{f}(-10) \leq \mathrm{f}(\mathrm{x})$ for all other x^{\prime} s :
(-) $f(3)=4$ 现

- $f^{\prime}(x)=4$
- $y=f(x)$
- $y_{1}=f^{\prime}(x)$

(\% DD: 1/1/13: You are not on the right track with
this problem. I 've uploaded a movie that I hope
will help your understanding.
G.6.c.ii)

You 've got a function $\mathrm{f}(\mathrm{x})$ and a point $\mathrm{x}=\mathrm{a}$.
If $\mathrm{f}^{\prime}(\mathrm{a})<0$, is it possible that $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{x})$ for all other x 's?
Why?
MR, $1 / 6$: Since $f^{\prime}(a)$ is negative, when x moves to the right of a, then $f(x)$ will decrease and when x moves to the left of a, then $f(x)$ will increase. It is not possible for $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{x})$ for all other x 's. If this were the case, $\mathrm{f}(\mathrm{x})$ would be at its global minimum and $\mathrm{f}^{\prime}(\mathrm{a})$ would $=0$.

DD: 1/9/13: Good.

MR, $1 / 2$: Thanks for the video. Since $f^{\prime}(a)$ is negative. when $f(x)$ moves to the right it will
decrease and when it moves to the left it will increase. It is not possible for $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{x})$ for all other x 's If this were the case, $\mathrm{f}(\mathrm{x})$ would be at its olohal minimum and $f^{\prime}($ a) would $=0$
\bigcirc MR, 12/29: In this case, $\mathrm{f}^{\prime}(\mathrm{a})$ is always less than 0 , and the minimum on this interval $-10 \leq x \leq 10$
occurs where $x=10$. In this case, yes, it is possible for $f(a) \leq f(x)$ (in this case $f(10) \leq f(x)$ for all other x^{\prime}

M3.3.f-3=8=010913.the

