Growth

Authors : Bill Davis, Horacio Porta and Jerry Uhl Producer : Bruce Carpenter
Publisher : Math Everywhere, Inc. Distributor \& Translator: MathMonkeys, LLC
1.05 Using The Tools

Give It a Try G2

DD: $1 / 14 / 13$: Still one to finish. See comment..

DD: $1 / 13 / 13$: One to finish.
DD: 1/11/13: A couple to reconsider.

Graphics Primitives

This LiveMath Independence Declaration allows the derivatives to be computed as intended in this notebook.
\rightarrow The variables $(a, b, c, x, y, t, r, k, s, z)$ are independent of each other $\boldsymbol{\nabla}$.
G.2) Highest and lowest points on the graph

G.2.a)

Find the highest point on the graph of

$$
\mathrm{f}(\mathrm{x})=e^{-\mathrm{x}^{2}}\left(2+\cos (\mathrm{x})+\frac{\sin (\mathrm{x})}{2}\right)
$$

Is there a lowest point on the graph?
$0 y=e^{-x^{2}}\left(2+\cos [x]+\frac{\sin [x]}{2}\right)$
MR, 12/19: First I graph the function to ballpark the highest point.

-1.5 ... 2.2 = left...right Stretch to Fit $\boldsymbol{\nabla}$

- 1.1 ... 3.4 = bottom...top cropping Moderately $\boldsymbol{\nabla}$

Graph Building Blocks
In Curve at (x, y) where $x=$ left ... right with a normal line, colored
Blue $\boldsymbol{\nabla}$.
MR, 12/19: It looks like there 's one crest between 5 and 5.
$\square f(x)=e^{-x_{2} x^{2}}\left(2+\cos [\vec{x}]+\frac{\sin [\vec{x}]}{2}\right)$$f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)$

$$
\begin{aligned}
& \triangle f^{\prime}(x)=\left(\frac{1}{2} \cos [x]-\sin [x]\right) e^{-x^{2}}-2\left(\cos [x]+\frac{1}{2} \sin [x]+2\right) e^{-x^{2}} x \quad \text { Substitute } \\
& \triangle f^{\prime}(x)=\frac{1}{2} e^{-x^{2}} \cos (x)-2 e^{-x^{2}} x \cos (x)-e^{-x^{2}} \sin (x)-e^{-x^{2}} x \sin (x)-4 e^{-x^{2}} x \quad \text { Expand }
\end{aligned}
$$

\square FindRootForFPrime ($-5,5$)
\triangle FindRootForFPrime $(-5,5)=0.0705978476095161 \quad$ Calculate
(MR, 12/19: This tells me the value for x where the original function is at its greatest. I plug in to solve:
$\square x=0.070597847609516$
$\square f(x)=e^{-x^{2}}\left(2+\cos [x]+\frac{\sin [x]}{2}\right)$
$\Delta f(x)=\frac{\cos (0.070597847609516)+\frac{1}{2} \sin (0.070597847609516)+2}{e^{0.00498405608709644}} \quad$ Substitute
$\triangle f(x)=3.017700$
MR, 12/19: Nailed it.
(E MR, 12/19: There is not a lowest point on the graph. The infinite limit in both positive and negative directions approaches 0 without ever reachign it
because the dominant term is $e^{-x^{2}}$
DD: 1/11/13: Good.
G.2.b)

Find the highest point on the graph of

$$
f(x)=-577+736 x-324 x^{2}+60 x^{3}-4 x^{4}
$$

Is there a lowest point on this graph?

- $y=-577+736 x-324 x^{2}+60 x^{3}-4 x^{4}$

MR, 12/19: First I graph the function to ballpark
the highest point.

Graph Building Blocks
\mathfrak{m}－Curve at (x, y) where $x=$ left.. right with a normal $\boldsymbol{\nabla}$ line，colored Blue $\boldsymbol{\nabla}$ ．

MR，12／19：It looks like the highest point is

 between 1 and 4 ．$$
\square f(x)=-577+736 x^{2}-324 x^{2}+60 x^{2}-4 x^{4}
$$

$\square f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)$
$\triangle f^{\prime}(x)=-16 x^{3}+180 x^{2}-648 x+736 \quad$ Substitute
$\triangle f^{\prime}(x)=-16 x^{3}+180 x^{2}-648 x+736 \quad$ Expand
－$f^{\prime}($ 强 $)=-16 x^{2}+180$ 研 $^{2}-648$ 强 +736
\square FindRootForFPrime（1，4）
FindRootForFPrime $(1,4)=2.34413115425505$ Calculate
MR，12／19：This tells me the value for x where the original function is at its greatest．I plug in to solve：
$\square x=2.344131154255$
$\square f(x)=-577+736 x-324 x^{2}+60 x^{3}-4 x^{4}$
$\triangle f(x)=19.9916393002012$ Substitute
（气 MR，12／19：Nailed it．
\mathcal{Y}^{-}MR，12／19：The lowest point is infinitely low．
Since -4 x is the dominant term，it keeps going lower and lower with no dip．
（）DD：1／11／13：You don＇t mean -4 x is the dominant term．Please fix．．
（ E MR， $1 / 11$ ：The lowest point is infinitely low．Since $-4 x^{4}$ is the dominant term，it keeps going lower and lower with no dip．
DD：1／13／13：Good．
G．2．c）
Find as accurately as you can the highest and lowest
points on the graph of

$$
f(x)=x \frac{240-7 x^{2}}{240+3 x^{2}}
$$

for $-6 \leq x \leq 6$ ．
＊＊＊＊＊＊＊MR，1／15：Here，with a factored polynomial：

＊＊＊＊＊＊＊

$\square-21 x^{4}-5760 x^{2}+57600=0$
$\triangle-21(x+3.10802202357547)(x-3.10802202357547)(x-16.8506829293279 i)(x+16.8506829293279 i)=0 \quad F a c$
$\triangle x+3.10802202357547=0 \quad$ Isolate Each Monomial Factor
$\triangle x=-3.10802202357547 \quad$ Isolate
$\triangle x-3.10802202357547=0 \quad$ Isolate Each Monomial Factor
$\triangle x=3.10802202357547 \quad$ Isolate
$\triangle x-16.8506829293279 i=0 \quad$ Isolate Each Monomial Factor
$\triangle x=16.8506829293279 i \quad$ Isolate
$\triangle x+16.8506829293279 i=0 \quad$ Isolate Each Monomial Factor
$\triangle x=-16.8506829293279 i \quad$ Isolate
MR，1／15：I look at only the real numbers：
$x=3.10802202357547$
$x=-3.10802202357547$
（ $=1 / 15$ ：Then I plug in to the orginal function to find the mins and maxes：
$\square x \frac{240-7 x^{2}}{240+3 x^{2}}$

MR， $1 / 15$ ：This is the highest point：

$\triangle x \frac{240-7 x^{2}}{240+3 x^{2}}=1.99184459004351 \quad$ Substitute
$\square f(3.1080220235755)=1.9918445900435$
\％MR，1／15：This is the lowest point：
$\triangle x \frac{240-7 x^{2}}{240+3 x^{2}}=-1.99184459004351 \quad$ Substitute
$\square f(-3.10802202357547)=-1.99184459004351$
（ ${ }^{\text {E }}$ MR， $1 / 15$ ：Nice．Factoring gives me some actual x ＇
s to work with，rather than just a ballpark．
（佥 MR，1／11：Fixed：
$\bigcirc y=x \frac{240-7 x^{2}}{240+3 x^{2}}$
MR， $1 / 11$ ：It looks like the highest point is between $x=2$ and $x=4$ ．It looks like the lowest point is between $x=-4$ and -2 ．
－$f($ 现 $)=\frac{240-7 \text { 球 }^{2}}{240+3 \text { 理 }^{2}}$
－$y_{1}=f(x)$

$$
\begin{aligned}
& -6 \ldots 6=\text { left...right True Proportions } \boldsymbol{\nabla} \\
& -3 \ldots 3=\text { bottom...top } \quad \text { cropping Moderately }
\end{aligned}
$$

Graph Building Blocks
M－Curve at $\left(x, y_{1}\right)$ where $x=$ left ．．．right with a normal
line，colored Black -
$\square f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)$
$\triangle f^{\prime}(x)=\frac{-6 x^{2}\left(-7 x^{2}+240\right)+\left(-21 x^{2}+240\right)\left(3 x^{2}+240\right)}{\left(3 x^{2}+240\right)^{2}}$
$\triangle f^{\prime}(x)=\frac{-21 x^{4}-5760 x^{2}+57600}{\left(3 x^{2}+240\right)^{2}} \quad$ Expand

MR, $1 / 14$: Now I set the function to 0 to solve find the roots:
$\square 0=\frac{-21 x^{4}-5760 x^{2}+57600}{\left(3 x^{2}+240\right)^{2}}$
$\triangle 0=-21 x^{4}-5760 x^{2}+57600 \quad$ Move Over
$\triangle 0=3\left(-7 x^{4}-1920 x^{2}+19200\right) \quad$ Collect
$\triangle 0=-7 x^{4}-1920 x^{2}+19200 \quad$ Move Over

$$
\begin{aligned}
& \triangle 0=-7\left(x+\frac{1}{2} \sqrt{\left[\sqrt{\left\{\frac{640}{7}\left(\left[\frac{1920}{7}\right]^{2}+\frac{76800}{7}\right)-\frac{1}{27}\left(\frac{3840}{7}\right)^{3}\right\}^{2}+\left\{\frac{1}{9}\left(3\left[\left\{\frac{1920}{7}\right\}^{2}+\frac{76800}{7}\right]-\left[\frac{3840}{7}\right]^{2}\right)\right\}^{3}}+1767370.26\right.}\right. \\
& \triangle x=-\frac{1}{2} \sqrt{\left(\sqrt{\left[\frac{640}{7}\left\{\left(\frac{1920}{7}\right)^{2}+\frac{76800}{7}\right\}-\frac{1}{27}\left\{\frac{3840}{7}\right\}^{3}\right]^{2}+\left[\frac{1}{9}\left\{3\left(\left[\frac{1920}{7}\right]^{2}+\frac{76800}{7}\right)-\left(\frac{3840}{7}\right)^{2}\right\}\right]^{3}}+1767370.2623\right.} \\
& \triangle x=-1.46000965999554 \times 10^{-7} i+\frac{1}{2} \sqrt{-\frac{1}{2}\left(\sqrt{\left[\frac{640}{7}\left\{\left(\frac{1920}{7}\right)^{2}+\frac{76800}{7}\right\}-\frac{1}{27}\left\{\frac{3840}{7}\right\}^{3}\right]^{2}+\left[\frac { 1 } { 9 } \left\{3 \left(\left[\frac{1920}{7}\right]^{2}+\right.\right.\right.}\right.}
\end{aligned}
$$

MR, $1 / 14$: I ' m having a very diffucult time isolating
x. I 'm not sure I have the chops for this. Is this some kind of Pascal thing?
DD: $1 / 14 / 13$: Easy. Write the polynomial with zero on the right hand side. Select the polynomial. Use the pull-down: Compute/Macros-Solving/ Solve-by-factoring. This will give you the solutions automatically. Do this neatly in a new, separate
box. Things are getting disorganized here.FindRootForFPrime (-4, - 2)
\triangle FindRootForFPrime $(-4,-2)=-3.10802202357547$ Calculate
\square FindRootForFPrime (2,4)
\triangle FindRootForFPrime (2,4) $=3.10802202357545$ Calculate
$\square x=-3.10802202357547$
$\square=3.1080220235755$
F MR, 1/11: These tell me the values for x where the original function is at its least and greatest. I plug in to solve:
$\square f(x)=x \frac{240-7 x^{2}}{240+3 x^{2}}$
MR, $1 / 11$: This is the lowest point:
$\triangle f(x)=-1.99184459004351$
MR, $1 / 11$: This is the highest point:
$\triangle f(x)=1.99184459004351 \quad$ Substitute

- $y=x \frac{240-7 x^{2}}{240+3 x^{2}}$

MR, 12/19: First I graph the function to ballpark the highest point.

$-6 \ldots$... $6=$ left...right Stretch to Fit -
$-2 \ldots 2=$ bottom...top cropping Moderately
Graph Building Blocks
$1 \sim$ Curve at (x, y) where $x=$ left... right with a
extra heavy line, colored Blue $\boldsymbol{\nabla}$.
MR, 12/19: It looks like the highest point is at -6 .
The lowest point is at 6 . This is a trap, since there is more stuff going on past the 6 's.

DD: $1 / 11 / 13$: Here is a better graph of your
function. You should reconsider your answers.

- $y_{1}=f(x)$

$-6 \ldots . .6=$ left...right \quad True Proportions	
$-3 \ldots 3=$ bottom...top	cropping Moderately

Graph Building Blocks
M-Curve at $\left(x, y_{1}\right)$ where $x=$ left ... right with a normal
line, colored Black -
$\square f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)$
$\triangle f^{\prime}(x)=\frac{-6 x^{2}\left(-7 x^{2}+240\right)+\left(-21 x^{2}+240\right)\left(3 x^{2}+240\right)}{\left(3 x^{2}+240\right)^{2}}$
Substitute
$\triangle f^{\prime}(x)=\frac{-21 x^{4}-5760 x^{2}+57600}{\left(3 x^{2}+240\right)^{2}} \quad$ Expand
(纪 DD: 1/13/13: I wouldn 't use FindRootForFPrime on this. You 'll be more accurate if you just solve the equation: $\mathrm{f}^{\prime}(\mathrm{x})=0$.
$\square f^{\prime}(x)=\frac{-21 x^{4}-5760 x^{2}+57600}{\left(3 x^{2}+240\right)^{2}}$
$f^{\prime}(x)=0$
$\triangle \frac{-21 x^{4}-5760 x^{2}+57600}{\left(3 x^{2}+240\right)^{2}}=0 \quad$ Substitute
$\triangle-21 x^{4}-5760 x^{2}+57600=0 \quad$ Move Over
(CD : 1/13/13: Set the numerator to zero and solve.

\square FindRootForFPrime $(5.9999,6)$
FindRootForFPrime $(5.9999,6)=5.9999$ Calculate
\square FindRootForFPrime ($-6,-5.9$)
FindRootForFPrime $(-6,-5.9)=-6 \quad$ Calculate
$\square x=-6$
$\square x=5.9999$
(MR, 12/19: These tell me the values for x where the original function is at its least and greatest. I plug in to solve:
$\square f(x)=x \frac{240-7 x^{2}}{240+3 x^{2}}$
MR, 12/19: This is the highest point.
$\Delta f(x)=\frac{6}{29} \quad$ Substitute
MR, 12/19: This is close to the lowest point,
althought intuition tells me it should be where $\mathrm{x}=6$.
I ' m not sure why this didn 't calculate when I did
the FindRootForFPrime fucntion.
$\triangle f(x)=-0.206750418262346$ Substitute
$\square x=6$
$\triangle f(x)=-\frac{6}{29} \quad$ Substitute

This electonic material is © 2008 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.
For more information,
visit www.livemath.com

