# Course Information - Distance Calculus @ Roger Williams University Online Accredited Course

It is important that any Distance Calculus Courses course you wish to take online, you need to make sure this course is from a**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

Free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

There are more than a few actual colleges/universities offering Course Information - Distance Calculus @ Roger Williams University courses online. Be careful as you investigate these courses - they may not fit your needs for actual course instruction and timing. Most require you enroll and engage your course during their standard academic semesters. Most will have you use a publisher's "automated textbook" which is .... um .... well, if you like that kind of thing, then you have a few options over there at those schools.

Distance Calculus is all about real university-level calculus courses - that's all we do! We have been running these courses for 20+ years, so we know how to get students through the these courses fast fast fast!

Here is a video about earning real academic credits in Distance Calculus Courses from Distance Calculus @ Roger Williams University:

## Earning Real Academic Credits for Calculus

## Applied Calculus vs Calculus I

## Distance Calculus - Student Reviews

*Date Posted: Apr 6, 2020*

Review by: Paul Simmons

Courses Completed: Multivariable Calculus, Differential Equations

Review: I took Multivariable and Diff Eq during the summer. The DiffEq course was awesome - very useful for my physics and engineering course. I was unsure about Mathematica at first, but I got the hang of it quickly. Thank you Distance Calculus!

Transferred Credits to: University of Oregon

*Date Posted: Dec 9, 2019*

Review by: Louisa A.

Courses Completed: Calculus I

Review: My microeconomics class required college-level calculus as a prerequisite, and I didn't want to wait until next year to take the class. So, I took DC's Calculus I class over the summer, so I could register for econ when I got back to school this fall. I actually think I got more help taking the class online than I would have in the huge lecture classes here. Prof. Curtis was really clear in explaining concepts and talking me through the topics that I was having trouble with. It took me about 10 weeks to finish the class, which didn't seem too long and didn't feel rushed. My friends who are in calculus now, trying to finish the prereq, are pretty jealous!

*Date Posted: Dec 9, 2019*

Review by: Louisa A.

Courses Completed: Calculus I

Review: My microeconomics class required college-level calculus as a prerequisite, and I didn't want to wait until next year to take the class. So, I took DC's Calculus I class over the summer, so I could register for econ when I got back to school this fall. I actually think I got more help taking the class online than I would have in the huge lecture classes here. Prof. Curtis was really clear in explaining concepts and talking me through the topics that I was having trouble with. It took me about 10 weeks to finish the class, which didn't seem too long and didn't feel rushed. My friends who are in calculus now, trying to finish the prereq, are pretty jealous!

## Distance Calculus - Curriculum Exploration

### 1.07: Races

- M7: 1.07: Races:
- M7.1: 1.07 - Basics
- M7.1.a: 1.07.B1: The Race Track Principle
- M7.1.b: 1.07.B2: The Race Track Principle and differential equations
- M7.1.c: 1.07.B3: The Race Track Principle and Euler's method of faking the plot of the solution of a differential equation
- M7.1.d: 1.07.B4: Tangent lines and the Race Track Principle
- M7.2: 1.07 - Tutorials
- M7.2.a: 1.07.T1: Using Euler's method to fake the plot of f(x) given f ' (x) and one value of f(x)
- M7.2.b: 1.07.T2: Using the Race Track Principle to help to estimate roundoff error
- M7.2.c: 1.07.T3: If f''(x) is always positive then tangent lines run below the curve
- M7.3: 1.07 - Give It a Try
- M7.3.a: 1.07.G1: Versions of the Race Track Principle
- M7.3.b: 1.07.G2: Running Euler's faker
- M7.3.c: 1.07.G3: The Race Track Principle and differential equations
- M7.3.d: 1.07.G4: The error function Erf(x)
- M7.3.e: 1.07.G5: Round off
- M7.3.f: 1.07.G6: Calculating accurate values of ln(x)
- M7.3.g: 1.07.G7: Calculating accurate values of e^x
- M7.3.h: 1.07.G8: Euler's faker and the second derivative
- M7.3.i: 1.07.G9: Inequalities
- M7.3.j: 1.07.G10: The Law of the Mean
- M7.3.k: 1.07.G11: If f''(x) is never positive then tangent lines run above the curve; At points of inflection, the tangent line crosses the curve
- M7.4: 1.07 - Literacy