# Fall 2020 Multivariable Calculus Accredited Calculus Academic Credits

Fall 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: Jun 21, 2020*

Review by: Abdul J.

Courses Completed: Applied Calculus

Review: This was the best class! So much more interesting doing the computer math than a boring lecture class. Diane was so responsive and helpful. I recommend this course.

Transferred Credits to: Villanova University

*Date Posted: Jan 19, 2020*

Review by: Dan P.

Courses Completed: Calculus I, Calculus II

Review: I found the courses to be informative, enjoyable, and most importantly, effective in helping me learn the concepts of calculus. My math skills were always very weak, and I had a great deal of difficulty passing my undergrad math courses. The pace of a traditional classroom setting was just too quick for the concepts to really sink in. With Distance Calculus, I had courses that were taught with the full rigor of an on-campus class, but where I could take my time and really learn the material...all while having access to top-tier instructional help for real math professors and assistants. DC gave me the tools and the confidence I needed, so after successfully passing my DC courses, I moved on and completed a master's degree in CS.

*Date Posted: May 3, 2018*

Review by: James Holland

Courses Completed: Calculus I, Calculus II

Review: I needed to finish the Business Calculus course very very very fast before my MBA degree at Wharton started. With the AWESOME help of Diane, I finished the course in about 3 weeks, allowing me to start Wharton on time. Thanks Diane!

Transferred Credits to: Wharton School of Business, University of Pennsylvania

## Distance Calculus - Curriculum Exploration

### VC.04 - Trajectories

- V4: VC.04 - Trajectories:
- V4.1: VC.04 - Basics
- V4.1.a: VC.04.B1: Vector fields and their trajectories
- V4.1.b: VC.04.B2: Flow of vector fields along curves; flow of vector fields across curves: Visual inspection
- V4.1.c: VC.04.B3: Flow of vector fields along curves; flow of vector fields across curves
- V4.2: VC.04 - Tutorials
- V4.2.a: VC.04.T1: Flow across and flow along: Visual inspection
- V4.2.b: VC.04.T2: Differential equations and and their associated vector fields
- V4.2.c: VC.04.T3: Flow across and along a curve and the sign of the dot product
- V4.2.d: VC.04.T4: The 2D electric field
- V4.2.e: VC.04.T5: Troubleshooting plots of vector fields
- V4.3: VC.04 - Give It a Try
- V4.3.a: VC.04.G1: Looking for sinks (drains)
- V4.3.b: VC.04.G2: Flow along and flow across
- V4.3.c: VC.04.G3: Normals, tangents and dot plots
- V4.3.d: VC.04.G4: The most important vector field of them all: The gradient field
- V4.3.e: VC.04.G5: Differential equations and their associated vector fields
- V4.3.f: VC.04.G6: Trajectories: Can they cross?
- V4.3.g: VC.04.G7: Drifting along with a tumbleweed
- V4.3.h: VC.04.G8: Logistic harvesting revisited
- V4.3.i: VC.04.G9: Water flow with spigots and drains
- V4.3.j: VC.04.G10: 2D Electrical fields
- V4.3.k: VC.04.G11: Gradient fields for max-min, Hamiltonian fields for level curves, and implicitly defined functions
- V4.4: VC.04 - Literacy