# Fall 2020 Vector Calculus: Multivariable Calculus Accredited Calculus Academic Credits

Fall 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: Jan 13, 2020*

Review by: Anonymous

Courses Completed: Calculus II

Review: This is the most interactive and productive online course I have ever taken. I had taken calculus before but never understood some of the underlying concepts until I took this course. If you want to really learn calculus in a way that will stay with you for the rest of your life, take this course.

Transferred Credits to: The college of New Jersey

*Date Posted: Mar 16, 2020*

Review by: Malia K.

Courses Completed: Applied Calculus

Review: Course was good and fast. I don't like math so I can't say it was fun or anything. Grader was very nice. Software was ok.

Transferred Credits to: University of Maine

*Date Posted: Apr 29, 2020*

Review by: Harlan E.

Courses Completed: Calculus I, Calculus II

Review: I did not do well in AP Calculus during my senior year in high school. Instead of trying to cram for the AP exam, I decided to jump ship and go to Distance Calculus to complete Calculus I. This was awesome! I finished Calculus I in about 6 weeks, and then I kept going into Calculus II. I started as a freshman at UCLA with both Calculus I and II done!

Transferred Credits to: University of California, Los Angeles

## Distance Calculus - Curriculum Exploration

### VC.03 - Gradient

- V3: VC.03 - Gradient:
- V3.1: VC.03 - Basics
- V3.1.a: VC.03.B1: The gradient and the chain rule
- V3.1.b: VC.03.B2: Level curves, level surfaces and the gradient as normal vector
- V3.1.c: VC.03.B3: The gradient points in the direction of greatest initial increase
- V3.1.d: VC.03.B4: Using linearizations to help to explain the chain rule
- V3.2: VC.03 - Tutorials
- V3.2.a: VC.03.T1: The total differential
- V3.2.b: VC.03.T2: What's the chain rule good for?
- V3.2.c: VC.03.T3: The gradient and maximization and minimization
- V3.2.d: VC.03.T4: Eye-balling a function for max-min
- V3.2.e: VC.03.T5: Data fit
- V3.2.f: VC.03.T6: Lagrange's method for constrained maximization and minimization
- V3.3: VC.03 - Give It a Try
- V3.3.a: VC.03.G1: The gradient points in the direction of greatest initial increase
- V3.3.b: VC.03.G2: The gradient is perpendicular to the level curves and surfaces
- V3.3.c: VC.03.G3: The heat seeker
- V3.3.d: VC.03.G4: Doing 'em by hand
- V3.3.e: VC.03.G5: The highest crests and the deepest dips
- V3.3.f: VC.03.G6: Closest points, gradients and Lagrange's method
- V3.3.g: VC.03.G7: The Cobb-Douglas manufacturing model for industrial engineering
- V3.3.h: VC.03.G8: Data Fit in two variables: Plucking a guitar string
- V3.3.i: VC.03.G9: Linearizations and total differentials
- V3.3.j: VC.03.G10: Keeping track of constituent costs
- V3.3.k: VC.03.G11: The great pretender
- V3.3.l: VC.01.G1-A: Another Help Movie
- V3.3.m: VC.01.G1-B: Another Help Movie
- V3.3.n: VC.01.G1-C: Yet Another Help Movie
- V3.3.o: VC.03.G2.c Hint
- V3.4: VC.03 - Literacy
- V3.5: VC.03 - Revisited
- V3.5.a: VC.03.B1 - Revisited
- V3.5.b: VC.03.B2 - Revisited
- V3.5.c: VC.03.B3 - Revisited
- V3.5.d: VC.03.T1 - Revisited
- V3.5.e: VC.03.T2 - Revisited
- V3.5.f: VC.03.T3 - Revisited
- V3.5.g: VC.03.T4 - Revisited
- V3.5.h: VC.03.T6 - Revisited
- V3.5.i: VC.03.G1.b.i - Revisited
- V3.5.j: VC.03.G1.d.i - Revisited
- V3.5.k: VC.03.G1.d.ii - Revisited
- V3.5.l: VC.03.G2.c - Revisited