# Enroll Now, Start Today - Distance Calculus New Courses Academic Credits

Unable to "wait for the next academic semester"? Distance Calculus @ Roger Williams University has you covered!Our Distance Calculus courses are designed to be asynchronous - a fancy term for "self-paced" - but it more than just self-paced - it is all about working on your timeline, and going either as slow as you need to, or as fast as your academic skills allow.

Many students need a Calculus course completed on the fast track - because time is critical in finishing calculus courses needed for academic prerequisites and graduate school applications.

Here is a video about earning real academic credits from Distance Calculus @ Roger Williams University:

## Distance Calculus - Student Reviews

*Date Posted: Dec 20, 2019*

Review by: Bill K.

Courses Completed: Calculus I, Calculus II, Multivariable Calculus, Linear Algebra

Review: I took the whole calculus series and Linear Algebra via Distance Calculus. Dr. Curtis spent countless hours messaging back and forth with me, answering every question, no matter how trivial they might seem. Dr. Curtis is extremely responsive, especially if the student is curious and is willing to work hard. I don't think I ever waited much more than a day for Dr. Curtis to get a notebook back to me. Dr. Curtis would also make videos of concepts if I was really lost. The course materials are fantastic. If you are a student sitting on the fence, trying to decide between a normal classroom class or Distance Calculus classes with Livemath and Mathematica, my choice would be the Distance Calculus classes every time. The Distance Calculus classes are more engaging. The visual aspects of the class notebooks are awesome. You get the hand calculation skills you need. The best summary I can give is to say, given the opportunity, I would put my own son's math education in Dr. Curtis's hands.

Transferred Credits to: None

*Date Posted: Dec 20, 2019*

Review by: Bill K.

Courses Completed: Calculus I, Calculus II, Multivariable Calculus, Linear Algebra

Review: I took the whole calculus series and Linear Algebra via Distance Calculus. Dr. Curtis spent countless hours messaging back and forth with me, answering every question, no matter how trivial they might seem. Dr. Curtis is extremely responsive, especially if the student is curious and is willing to work hard. I don't think I ever waited much more than a day for Dr. Curtis to get a notebook back to me. Dr. Curtis would also make videos of concepts if I was really lost. The course materials are fantastic. If you are a student sitting on the fence, trying to decide between a normal classroom class or Distance Calculus classes with Livemath and Mathematica, my choice would be the Distance Calculus classes every time. The Distance Calculus classes are more engaging. The visual aspects of the class notebooks are awesome. You get the hand calculation skills you need. The best summary I can give is to say, given the opportunity, I would put my own son's math education in Dr. Curtis's hands.

Transferred Credits to: None

*Date Posted: Apr 10, 2020*

Review by: Benjamin T.

Courses Completed: Calculus I

Review: This course provided an excellent chance to learn about Calculus...again. I took calculus in high school, but I learned so much more with this course! It does take a good amount of time to do all the lessons, so definitely keep on top of them, but all the exercises helped me to really understand the material. And the nice thing is you can do it on your own time at home.

Transferred Credits to: Western University of Health Sciences: College of Optometry

## Distance Calculus - Curriculum Exploration

### 1.07: Races

- M7: 1.07: Races:
- M7.1: 1.07 - Basics
- M7.1.a: 1.07.B1: The Race Track Principle
- M7.1.b: 1.07.B2: The Race Track Principle and differential equations
- M7.1.c: 1.07.B3: The Race Track Principle and Euler's method of faking the plot of the solution of a differential equation
- M7.1.d: 1.07.B4: Tangent lines and the Race Track Principle
- M7.2: 1.07 - Tutorials
- M7.2.a: 1.07.T1: Using Euler's method to fake the plot of f(x) given f ' (x) and one value of f(x)
- M7.2.b: 1.07.T2: Using the Race Track Principle to help to estimate roundoff error
- M7.2.c: 1.07.T3: If f''(x) is always positive then tangent lines run below the curve
- M7.3: 1.07 - Give It a Try
- M7.3.a: 1.07.G1: Versions of the Race Track Principle
- M7.3.b: 1.07.G2: Running Euler's faker
- M7.3.c: 1.07.G3: The Race Track Principle and differential equations
- M7.3.d: 1.07.G4: The error function Erf(x)
- M7.3.e: 1.07.G5: Round off
- M7.3.f: 1.07.G6: Calculating accurate values of ln(x)
- M7.3.g: 1.07.G7: Calculating accurate values of e^x
- M7.3.h: 1.07.G8: Euler's faker and the second derivative
- M7.3.i: 1.07.G9: Inequalities
- M7.3.j: 1.07.G10: The Law of the Mean
- M7.3.k: 1.07.G11: If f''(x) is never positive then tangent lines run above the curve; At points of inflection, the tangent line crosses the curve
- M7.4: 1.07 - Literacy