# New Course Information - Distance Calculus @ Roger Williams University Summer 2020 Online Calculus Academic Credits

Distance Calculus @ Roger Williams University operates 24/7/365 with open enrollment outside of the traditional academic calendar. We offer all of our courses during the Summer, Fall, Winter, before semesters traditionally start, after semesters start, during vacation weeks ... I think you get the idea :)M

If you wish to complete a Distance Calculus New Courses course online, make sure you take this course from a

**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

The free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

There are more than a few actual colleges/universities offering New Course Information - Distance Calculus @ Roger Williams University courses online. Be careful as you investigate these courses - they may not fit your needs for actual course instruction and timing. Most require you enroll and engage your course during their standard academic semesters. Most will have you use a publisher's "automated textbook" which is .... um .... well, if you like that kind of thing, then you have a few options over there at those schools.

Distance Calculus is all about real university-level calculus courses - that's all we do! We have been running these courses for 20+ years, so we know how to get students through the these courses fast fast fast!

Here is a video about earning real academic credits in Distance Calculus New Courses from Distance Calculus @ Roger Williams University:

## Earning Real Academic Credits for Calculus

## Applied Calculus vs Calculus I

## Distance Calculus - Student Reviews

*Date Posted: Feb 23, 2020*

Review by: Carl Conners

Courses Completed: Multivariable Calculus, Differential Equations, Linear Algebra

Review: After a really rough first year of calculus, I completed all of the second year calculus courses with Distance Calculus. It was like night and day the difference. My first year was so boring and monotonous. Multivariable Calculus, Differential Equations, and Linear Algebra through Distance Calculus were just so much different - so not boring at all. I thoroughly enjoyed these courses. So engaging.

Transferred Credits to: Michigan State University

*Date Posted: Apr 29, 2020*

Review by: Harlan E.

Courses Completed: Calculus I, Calculus II

Review: I did not do well in AP Calculus during my senior year in high school. Instead of trying to cram for the AP exam, I decided to jump ship and go to Distance Calculus to complete Calculus I. This was awesome! I finished Calculus I in about 6 weeks, and then I kept going into Calculus II. I started as a freshman at UCLA with both Calculus I and II done!

Transferred Credits to: University of California, Los Angeles

*Date Posted: Jan 12, 2020*

Review by: Mark Neiberg

Courses Completed: Calculus I, Calculus II, Multivariable Calculus

Review: Curriculum was high quality and allowed student to experiment with concepts which resulted in an enjoyable experience. Assignment Feedback was timely and meaningful.

## Distance Calculus - Curriculum Exploration

### 1.03: Growth Rates

- M3: 1.03: Growth Rates:
- M3.1: 1.03 - Basics
- M3.1.a: 1.03.B1: Instantaneous growth rates
- M3.1.b: 1.03.B2: Instantaneous Growth Rate of Power Functions
- M3.1.c: 1.03.B3: The Instantaneous Growth Rate of Trig Functions
- M3.1.d: 1.03.B4: The Instantaneous Growth Rate of Exponential and Log Functions
- M3.2: 1.03 - Tutorials
- M3.2.a: 1.03.T1: Average growth rate versus instantaneous growth rate
- M3.2.b: 1.03.T2: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.2.c: 1.03.T3: Spread of disease
- M3.2.d: 1.03.T4: Instantaneous growth rates in context
- M3.3: 1.03 - GiveItATry
- M3.3.a: 1.03.G1: Relating f(x) and f'(x)
- M3.3.b: 1.03.G2: Explaining LiveMath Derivative Output
- M3.3.c: 1.03.G3: Approximation of the instantaneous growth rate f'(x) by average growth rates
- M3.3.d: 1.03.G4: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.3.e: 1.03.G5: Graphics action
- M3.3.f: 1.03.G6: Up and down, maximum and minimum
- M3.3.g: 1.03.G7: Spread of disease
- M3.3.h: 1.03.G8: Average growth rate versus instantaneous growth rate
- M3.3.i: 1.03.G9: Why folks study the instantaneous growth rate instead of instantaneous growth
- M3.4: 1.03 - Literacy
- M3.5: 1.03 - Revisited