Authors : Bill Davis, Horacio Porta and Jerry Uhl Producer : Bruce Carpenter
Publisher : Math Everywhere, Inc. Distributor \& Translator: MathMonkeys, LLC

7.01 Simulations

Tutorials T1

Experience with the starred problems will be useful for understanding developments later in the c Graphics Primitives
$\stackrel{\leftrightarrow}{\rightarrow}$ The variables (x, s, t, z, y) are independent of each other $\boldsymbol{\nabla}$.
T.1) Monte Carlo estimation of integrals and other area measurements

John von Neumann and Stanislaw Ulam were great mathematicians of the early to midtwentiet Working together on the original atomic bomb in the 1940's, they devised the Monte Carlo method for doing approximate calculation for problems intractable by hand.
You'll see many Monte Carlo simulations in this course.
T.1.a) Monte Carlo estimation of an integral $\int_{\text {xlow }}^{x h i g h} f(x) d x$

Here's a function $\mathrm{f}[\mathrm{x}]$ plotted from $\mathrm{x}=\mathrm{xlow}$ to $\mathrm{x}=\mathrm{xhigh}$:

(-) xlow $=0$

- xhigh $=10$
- $f(\mathscr{S})=3 e^{\sin \left(\mathscr{S}^{1.6}\right)}$
- $y=f(x)$

$0 \ldots 11=$ left...right \quad Stretch to Fit ∇
$-0.4 \ldots 8.6=$ bottom...top cropping Moderately
Graph Building Blocks
\emptyset Curve at $(x, f[x])$ where $x=$ xlow \ldots xhigh with a extra heavy $\boldsymbol{\nabla}$ line, colored Other... ∇.

The symbol:

$$
\int_{\text {xlow }}^{x h i g h} f(x) d x
$$

stands for the measurement of the area between the plotted curve and the x -axis

Use uniformly distributed points and the Monte Carlo method to come up with a
the measurement of the area between the plotted curve and the x-axis.

Answer

Put a box around everything:
O

- xlow $=0 \quad$ xhigh $=10$
- ylow $=0$ yhigh $=8.5$
- $f(\mathscr{C})=3 e^{\sin \left(\mathscr{E}^{1.6}\right)}$
- $y=f(x)$

Your box does not have to touch everything in the area under measurement.
But, the area under measurement must be inside your box.
\geqslant Generate 3000 uniformly distributed random points inside the box:
$\bigcirc \geqslant$

- xlow $=0$ xhigh $=10$
- ylow $=0$ yhigh $=8.5$
- $f(x)=3 e^{\sin \left(x^{1.6}\right)}$
$\square x=\operatorname{Random}(x l o w$, xhigh $)$

$\square y=\operatorname{Random}($ ylow, yhigh $)$

Break the random points $\{\mathrm{x}, \mathrm{y}\}$ into two separate groups:

1) pointsunder $=$ those points $\{x, y\}$ under or on the curve and
2) pointsover $=$ those points $\{x, y\}$ over the curve

- xlow $=0$ xhigh $=10$
- ylow $=0$ yhigh $=8.5$
- $f(x)=3 e^{\sin \left(x^{1.6}\right)}$
$\square x=\operatorname{Random}($ xlow, xhigh $)$

$\square y=\operatorname{Random}($ ylow, yhigh)
O:

\geqslant pointsunder consists of the points $\{x, y\}$ for which $y \leq f[x]$.
pointsover consists of the points $\{x, y\}$ for which $y>f[x]$.
$\stackrel{\beta}{ }{ }^{-}$The Monte carlo idea:

Because the random points are approximately uniformly distributed, you can ϵ $\frac{\int_{\text {xlow }}^{\text {xhigh }} \mathrm{f}(\mathrm{x}) \mathrm{dx}}{\text { Area enclosed by the box }} \approx \frac{\text { Number of random points under curve }}{\text { Total number of random points inside box }}$. so that:

$$
\int_{\text {xlow }}^{\text {xhigh }} \mathrm{f}(\mathrm{x}) \mathrm{dx} \approx\left(\frac{\text { Number of random points under curve }}{\text { Total number of random points inside box }}\right) \text { (Are }
$$

Try it out:

Run 9 more Monte Carlo experiments, each involving 1000 independently ger

$\bigcirc \geqslant$

- xlow $=0$ xhigh $=10$
- ylow $=0$ yhigh $=8.5$
$\bigcirc f(x)=3 e^{\sin \left(x^{1.6}\right)}$
$\square x=$ Random (xlow, xhigh)

: :

$\square y=$ Random (ylow, yhigh)

ค:

 ㅇ․․․ Tabulate yRanNums ${ }_{6}$ with

- UnderCount ${ }_{1}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{1}[k] \leq f\left[\operatorname{xRanNums}_{1}\{k\}\right]\right)$
\triangle UnderCount $_{1}=1418 \quad$ Calculate
- UnderCount $2_{2}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{2}[k] \leq f\left[\operatorname{xRanNums}_{2}\{k\}\right]\right)$
\triangle UnderCount $_{2}=1376$
Calculate
- UnderCount ${ }_{3}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{3}[k] \leq f\left[\operatorname{xRanNums}_{3}\{k\}\right]\right)$
\triangle UnderCount $_{3}=1430 \quad$ Calculate
- UnderCount ${ }_{4}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{4}[k] \leq f\left[\operatorname{xRanNums}_{4}\{k\}\right]\right)$
\triangle UnderCount $_{4}=1417 \quad$ Calculate
- UnderCount ${ }_{5}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{5}[k] \leq f\left[\operatorname{xRanNums}_{5}\{k\}\right]\right)$
\triangle UnderCount $_{5}=1396 \quad$ Calculate
(- UnderCount ${ }_{6}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{6}[k] \leq f\left[\operatorname{xRanNums}_{6}\{k\}\right]\right)$
\triangle UnderCount $_{6}=1454 \quad$ Calculate
© UnderCount ${ }_{7}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{7}[k] \leq f\left[\operatorname{xRanNums~}_{7}\{k\rangle\right]\right)$
\triangle UnderCount $_{7}=1499 \quad$ Calculate
© UnderCount ${ }_{8}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{8}[k] \leq f\left[\operatorname{xRanNums}_{8}\{k\rangle\right]\right)$
\triangle UnderCount $_{8}=1442$ Calculate
© UnderCount ${ }_{9}=\sum_{k=1}^{3000}\left(\right.$ yRanNums $\left._{9}[k] \leq f\left[\operatorname{xRanNums~}_{9}\{k\}\right]\right)$
\triangle UnderCount $_{9}=1500 \quad$ Calculate
- BoxArea $=(x h i g h-x$ low $)($ yhigh - ylow $)$
(- Estimate ${ }_{1}=\frac{\text { UnderCount }_{1}}{3000}$ BoxArea
\triangle Estimate $_{1}=40.1766666666667 \quad$ Calculate
© Estimate ${ }_{2}=\frac{\text { UnderCount }_{2}}{3000}$ BoxArea
\triangle Estimate $_{2}=38.9866666666667 \quad$ Calculate
- Estimate ${ }_{3}=\frac{\text { UnderCount }_{3}}{3000}$ BoxArea
\triangle Estimate $_{3}=40.5166666666667 \quad$ Calculate
- Estimate ${ }_{4}=\frac{\text { UnderCount }_{4}}{3000}$ BoxArea
\triangle Estimate $_{4}=40.1483333333333 \quad$ Calculate
- Estimate ${ }_{5}=\frac{\text { UnderCount }_{5}}{3000}$ BoxArea
\triangle Estimate $_{5}=39.5533333333333 \quad$ Calculate
© Estimate ${ }_{6}=\frac{\text { UnderCount }_{6}}{3000}$ BoxArea
\triangle Estimate $_{6}=41.1966666666667$ Calculate
© Estimate ${ }_{7}=\frac{\text { UnderCount }_{7}}{3000}$ BoxArea
\triangle Estimate $_{7}=42.4716666666667 \quad$ Calculate
© Estimate ${ }_{8}=\frac{\text { UnderCount }_{8}}{3000}$ BoxArea
\triangle Estimate $_{8}=40.8566666666667 \quad$ Calculate
© Estimate ${ }_{9}=\frac{\text { UnderCount }_{9}}{3000}$ BoxArea
\triangle Estimate $_{9}=42.5$ Calculate
\geqslant Look at the average of the 10 Monte Carlo estimates:
\square Average $=\frac{\sum_{k=1}^{9} \text { Estimate }_{k}}{9}$
\triangle Average $=\frac{1}{9}$ Estimate ${ }_{9}+\frac{1}{9}$ Estimate ${ }_{8}+\frac{1}{9}$ Estimate ${ }_{7}+\frac{1}{9}$ Estimate ${ }_{6}+\frac{1}{9}$ Estima \triangle Average $=40.7118518518519 \quad$ Calculate
${ }^{\ominus}$ Compare with the actual value of:

$$
\int_{\text {xlow }}^{\text {xhigh }} \mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

as calculated by LiveMath:
$\bigcirc \geqslant$
xlow $=0$ xhigh $=10$

- ylow $=0$ yhigh $=8.5$
$\bigcirc f(\mathfrak{x})=3 e^{\sin \left(x^{1.6}\right)}$
$\square \int_{\text {xlow }}^{\text {xhigh }} f(x) d x$
$\triangle \int_{\text {xlow }}^{\text {xhigh }} f(x) d x=40.5342295803873 \quad$ Calculate
The Law of Large numbers says:
If your experience was typical, then the average of these Monte Carlo estimates is a close enough approximation of:

$$
\int_{\text {xlow }}^{\text {xhigh }} f(x) d x
$$

for most government work.
\geqslant T.1.b) Monte Carlo estimation of another area measurement
Here's the collapsed circle:

$$
x^{2}+y^{2 / 5}=1:
$$

$\bigcirc \geqslant$
(-) xlow $=-1$
(-) xhigh $=1$

7.01.T1.the page 10

- $\mathrm{xx}(\mathfrak{k})=\cos (\mathfrak{k})$
© $\mathrm{yy}(\hat{\mathfrak{h}})=(\sin [\hat{\xi}])^{5}$

Use uniformly distributed points and the Monte Carlo method to estimate the measurement of the area enclosed by the curve.
${ }^{\beta}$) Answer
θ Put a box around the curve:

$\bigcirc \geqslant$

- xlow $=-1 \quad$ xhigh $=1$
(0) ylow $=-1 \quad$ yhigh $=1$
(0) $\mathrm{xx}(\mathfrak{k})=\cos (\mathfrak{k})$
© $\mathrm{yy}(\mathfrak{k})=(\sin [\mathfrak{k}])^{5}$

\square
$-1 \ldots 1=$ left...right
True Proportions $\boldsymbol{\nabla}$
$-1 \ldots 1=$ bottom...top cropping Moderately

Graph Building Blocks
h Curve at (xx[t], yy $[t]$) where $t=0 \ldots 2 \pi$ with a extra heavy $\boldsymbol{\nabla}$ line, colored Other... $\boldsymbol{\nabla}$.
Box
Generate 2000 uniformly distributed random points inside the box:
\bigcirc

- xlow $=-1 \quad$ xhigh $=1$
- ylow $=-1 \quad$ yhigh $=1$
(0) $\mathrm{xx}(\hat{\mathfrak{k}})=\cos (\hat{\mathfrak{k}})$
(-) $y y(\mathfrak{k})=(\sin [\mathfrak{t}])^{5}$
$\square x=$ Random (xlow, xhigh)

$\square y=\operatorname{Random}($ ylow, yhigh $)$

相
The Monte carlo idea:
Because the points are approximately uniformly distributed, you can expect:
$\frac{\text { Area enclosed by curve }}{\text { Area enclosed by the box }} \approx \frac{\text { Number of random points inside curve }}{\text { Total number of random points inside box }}$ so that:

Area enclosed by curve \approx

Try it out remembering that:

$$
x^{2}+y^{2 / 5}=1
$$

is the same curve as:

$$
|x|^{2}+|y|^{2 / 5}=1:
$$

(-) xlow $=-1 \quad$ xhigh $=1$
(1) ylow $=-1 \quad$ yhigh $=1$
(-) $\mathrm{xx}(\hat{k})=\cos (\hat{k})$

- $\operatorname{yy}(\hat{\imath})=(\sin [\hat{l}])^{5}$
$\square x=\operatorname{Random}(x l o w$, xhigh $)$

$\square y=\operatorname{Random}($ ylow, yhigh $)$

\square BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
\triangle BoxArea $=4 \quad$ Calculate
\square Count $=\sum_{k=1}^{2000}\left(\left\lvert\, \mathrm{xRanNums}\left[\left.k\right|^{2}+\left\lvert\, \mathrm{yRanNums}[k]^{\frac{2}{5}} \leq 1\right.\right)\right.\right.$
\triangle Count $=976 \quad$ Calculate
\square AreaEstimate $=\frac{\text { Count }}{2000}$ BoxArea
\triangle AreaEstimate $=\frac{244}{125} \quad$ Substitute
AreaEstimate $=1.952 \quad$ Calculate

Now, average to try to get a better estimate:

\bigcirc

- xlow $=-1 \quad$ xhigh $=1$
- ylow $=-1 \quad$ yhigh $=1$
(0) $\mathrm{xx}(\mathfrak{t})=\cos (\mathfrak{t})$
(-) $y y(t)=(\sin [t])^{5}$
© LiveMath Note: Making 20 Tabulates can get pretty tiring. So here in this example we do the same computations, but with some functional magic.
Everytime these functions get Calculated for each input k , the output is a random number. Notice no k on the right-hand-side, because the random number is not dependent upon the k value.
- xRandoms (R_{k}) $=$ Random (xlow, xhigh)
- yRandoms ($(\mathbb{R})=$ Random (ylow, yhigh)
- fCounts $(\Re)=\sum_{k=1}^{2000}\left(\left\lfloor\mathrm{xRandoms}[k]^{2}+\left\lvert\, \mathrm{yRandoms}[k]^{\frac{2}{5}} \leq 1\right.\right)\right.$
- BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
- $\operatorname{AreaEst}(\mathbb{R})=\frac{\text { fCounts }(\mathbb{R})}{2000}$ BoxArea
\square AreaEst (1)
\triangle AreaEst $(1)=2.022 \quad$ Calculate
\square AreaEst (2)
\triangle AreaEst (2) $=1.886 \quad$ Calculate
\square AreaEst (3)
\triangle AreaEst (3) $=1.922 \quad$ Calculate
\square AreaEst (4)
\triangle AreaEst (4) $=1.954 \quad$ Calculate
\square AreaEst (5)
\triangle AreaEst (5) $=1.948 \quad$ Calculate
\square AreaEst (6)

\triangle AreaEst (6) $=1.96 \quad$ Calculate

\square AreaEst (7)
\triangle AreaEst $(7)=1.978 \quad$ Calculate
\square AreaEst (8)
\triangle AreaEst $(8)=1.996 \quad$ Calculate
\square AreaEst (9)
\triangle AreaEst (9) $=2.018 \quad$ Calculate
\square AreaEst (10)

$$
\triangle \text { AreaEst }(10)=1.988 \quad \text { Calculate }
$$

The average of the 10 Monte Carlo estimates is:
\square Average $=\frac{\sum_{k=1}^{10} \operatorname{AreaEst}(k)}{10}$
\triangle Average $=1.9718 \quad$ Calculate
If you've had a strong calculus course such as Calculus \&LiveMath: VectorCal you are in a position to check this estimate.

You parameterize the plotted curve $x^{2}+y^{2 / 5}=1$ via the parameterization :

$$
\{\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})\}=\left\{\cos (\mathrm{t}), \sin (\mathrm{t})^{5}\right\}
$$

with $0 \leq t \leq 2 \pi$ and then calculate:

$$
\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t:
$$

$\bigcirc \geqslant$
xlow $=-1 \quad$ xhigh $=1$

- ylow $=-1 \quad$ yhigh $=1$
(-) $x x(\hat{b})=\cos (\hat{\mathfrak{b}})$
(-) $y y(\mathbb{t})=(\sin [\mathfrak{t}])^{5}$
$\square \mathrm{xx}^{\prime}(\mathfrak{b})={ }_{t=\mathfrak{s}}\left[\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{xx}(t)\right.$
- $\mathrm{xx}^{\prime}(\mathfrak{k})=-\sin (\mathfrak{l}) \quad$ Substitute
$\square \mathrm{yy}^{\prime}(\mathfrak{t})={ }_{t=\mathfrak{t}}\left[\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{yy}(t)\right.$
- $\mathrm{yy}^{\prime}(\mathfrak{b})=5 \cos (\mathfrak{b})(\sin [\mathfrak{k}])^{4} \quad$ Substitute
$\square \int_{0}^{2 \pi} \mathrm{xx}(t) \mathrm{yy}^{\prime}(t) d t$
$\triangle \int_{0}^{2 \pi} \mathrm{xx}(t) \mathrm{yy}^{\prime}(t) d t=1.96349540648435 \quad$ Calculate
Because of the Law of Large Numbers, the smart money bets that the average ${ }^{-}$T.1.c) Monte Carlo estimation of another area measurement

Here's the collapsed circle:

$$
x^{2 / 5}+y^{2 / 5}=1:
$$

\bigcirc

- xlow $=-1$
- xhigh $=1$
- $\mathrm{xx}(\mathfrak{t})=(\cos [\mathfrak{t}])^{5}$
(- $\mathrm{yy}(\hat{\xi})=(\sin [\hat{\xi}])^{5}$

Use uniformly distributed points to estimate the measurement of the area enclose Answer

Put a box around the circle:

Generate 2500 uniformly distributed random points inside the box:
$\bigcirc \geqslant$

- xlow $=-1 \quad$ xhigh $=1$
- ylow $=-1 \quad$ yhigh $=1$
- $\mathrm{xx}(\hat{\mathbb{t}})=(\cos [\mathfrak{t}])^{5}$
(-) $y y(\mathfrak{k})=(\sin [\mathfrak{b}])^{5}$
\geqslant LiveMath Note: Using the functional approach to generating random numbers as demonstrated in the previous example
- xRandoms $\left(k_{k}\right)=$ Random (xlow, xhigh)

Graph Building Blocks
h Curve at (xx[t], yy [t]) where $t=0 \ldots 2 \pi$ with a extra heavy $\boldsymbol{\nabla}$ line, colored Other... ∇.
Box
Scatter plot of (xRandoms [k], yRandoms [k]) where $k=1$... 2500 using 2 point spots colored Orange $\boldsymbol{\nabla}$.
\% The Monte carlo idea:
Because the points are approximately uniformly distributed, you can expect:
$\frac{\text { Area enclosed by curve }}{\text { Area enclosed by the box }} \approx \frac{\text { Number of random points inside curve }}{\text { Total number of random points inside box }}$ so that:

Area enclosed by curve \approx
$\left(\frac{\text { Number of random points inside curve }}{\text { Total number of random points inside box }}\right)$.

Try it out remembering that:

$$
x^{2 / 5}+y^{2 / 5}=1
$$

is the same curve as:

$$
|x|^{2 / 5}+|y|^{2 / 5}=1:
$$

- xlow $=-1 \quad$ xhigh $=1$
(-) ylow $=-1 \quad$ yhigh $=1$
- $\operatorname{xx}(\sqrt{t})=(\cos [\mathfrak{t}])^{5}$
(-) $\operatorname{yy}(\mathfrak{l})=(\sin [\mathfrak{b}])^{5}$
\geqslant LiveMath Note: Using the functional approach to generating random numbers as demonstrated in the previous example

- yRandoms $\left({ }_{6}\right)=$ Random (ylow, yhigh)
- fCounts $(\mathbb{R})=\sum_{k=1}^{2500}\left(\left|\mathrm{xRandoms}[k]^{\frac{2}{5}}+\right| \mathrm{yRandoms}[k]^{\frac{2}{5}} \leq 1\right)$
- BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
- AreaEst $(\mathbb{\infty})=\frac{\text { fCounts }(\mathbb{\infty})}{2500}$ BoxArea
\square AreaEst (1)
\triangle AreaEst $(1)=0.392 \quad$ Calculate

Now, average to try to get a better estimate:
$\bigcirc \geqslant$
(-) xlow $=-1 \quad$ xhigh $=1$

- ylow $=-1 \quad$ yhigh $=1$
(- $\mathrm{xx}(\mathfrak{t})=(\cos [\mathfrak{t}])^{5}$
- $\operatorname{yy}(\widehat{\mathfrak{t}})=(\sin [\hat{\hbar}])^{5}$

LiveMath Note: Using the functional approach to generating random numbers as demonstrated in the previous example

- xRandoms (F_{5}) $=$ Random (xlow, xhigh)
- yRandoms (F_{k}) = Random (ylow, yhigh)
© fCounts $($ M $)=\sum_{k=1}^{2500}\left(\left|\mathrm{xRandoms}[k]^{\frac{2}{5}}+\right| \mathrm{yRandoms}[k]^{\frac{2}{5}} \leq 1\right)$
- BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
- AreaEst $(\Re)=\frac{\text { fCounts }(\Re)}{2500}$ BoxArea
$\square B_{1}=($ AreaEst[1], AreaEst [2], AreaEst[3], AreaEst [4], AreaEst[5])
$\triangle B_{1}=(0.3936,0.3952,0.368,0.3232,0.3584)$ Calculate
$\square B_{2}=($ AreaEst [6], AreaEst[7], AreaEst[8], AreaEst [9], AreaEst[10]) $\triangle B_{2}=(0.3568,0.3264,0.3824,0.3472,0.352)$ Calculate
The average of the 10 Monte Carlo estimates is:
\square Average $=\frac{\sum_{k=1}^{10} \operatorname{AreaEst}(k)}{10}$
\triangle Average $=0.37088 \quad$ Calculate

五
If you've had a strong calculus course such as Calculus \&LiveMath: VectorCal you are in a position to check this estimate.

You parameterize the plotted curve $x^{2 / 5}+y^{2 / 5}=1$ via the parameterization :

$$
\{\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})\}=\left\{\cos (\mathrm{t})^{5}, \sin (\mathrm{t})^{5}\right\}
$$

with $0 \leq \mathrm{t} \leq 2 \pi$ and then calculate:

$$
\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t:
$$

$\bigcirc \geqslant$

- xlow $=-1 \quad$ xhigh $=1$
(-) ylow $=-1 \quad$ yhigh $=1$
- $\mathrm{xx}(\mathfrak{t})=(\cos [\mathfrak{t}])^{5}$
- $\operatorname{yy}(\mathbb{t})=(\sin [\mathfrak{t}])^{5}$
$\square \mathrm{xx}^{\prime}(\mathfrak{t})={ }_{t=\mathfrak{t}}\left[\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{xx}(t)\right.$
- $\mathrm{xx}^{\prime}(\hat{\mathfrak{c}})=-5(\cos [\mathfrak{t}])^{4} \sin (\widehat{\mathfrak{c}}) \quad$ Substitute
$\square \mathrm{yy}^{\prime}(\hat{\mathfrak{t}})={ }_{t=\mathfrak{t}}\left[\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{yy}(t)\right.$
- $\mathrm{yy}^{\prime}(\mathfrak{G})=5 \cos (\mathfrak{t})(\sin [\mathfrak{k}])^{4} \quad$ Substitute
$\square \int_{0}^{2 \pi} \mathrm{xx}(t) \mathrm{yy}^{\prime}(t) d t$
$\triangle \int_{0}^{2 \pi} \mathrm{xx}(t) \mathrm{yy}^{\prime}(t) d t=0.368155387771826 \quad$ Calculate
Because of the Law of Large Numbers, the smart money bets that the average

This electonic material is © 2007 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.
For more information,
visit www.livemath.com

