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Prob.03.3 Probabilities
GIVE IT A TRY!

 Mathematica Initializations

MCB 11/5/07:  Thanks, your explanation did clear it up (see below).  I 
had expected the linear algebra course to be harder than the probability 
theory course, but the reverse seems to be true.  The linear algebra 
course builds on concepts that are familiar from vector calculus, but the 
prob. course involves new concepts and also a new way of thinking.  
Stretching those mental muscles...

RC: 11/5/07:  For you and I both.  
Linear Algebra is usually harder for most people, but you have done 
very well with the geometrical aspects of vector calculus.
There are a few hard things coming in Linear Algebra.

G.1) Calculus Cal bumps into Mathematica Fats

G.2) The indicator function, unions and intersections
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RC: 11/2/07:  So I had to think about this stuff for more than a few 
hours, as it does boggle the mind a bit on how it all works.
See if my explanation below makes sense.  I can make a movie 
discussion about it if need be.

G.3) Probability calculations in context:
Series wiring versus parallel wiring

This problem was adapted from Jim Pitman's book,
"Probability" (Springer Texts in Statistics, Springer-Verlag New York, 1993).

·G.3.a.i) Two independent components in series

A system is built using two components wired together in series:
wire = Graphics@Line@88-4, 0<, 84, 0<<DD;
comp1 = Graphics@8LightSkyBlue, Polygon@88-3, -1<, 8-1, -1<, 8-1, 1<, 8-3, 1<<D<D;
comp2 = Graphics@8Gold, Polygon@883, -1<, 81, -1<, 81, 1<, 83, 1<<D<D;
labels = 8Graphics@Text@"comp 1", 8-2, 0<DD, Graphics@Text@"comp 2", 82, 0<DD<;
Show@wire, comp1, comp2, labelsD;

comp 1 comp 2

Component 1 has probability 0.93 of working for one year.
Component 2 has probability 0.87 of working for one year.

Assuming that failures of the components are independent, estimate the 
probability that the system composed of both components wired in series 
will work for one year.
Since the components are wired in series, the system will fail if one or 
both of the components fails.  The probability that both components will 
work for one year is Prob@c1works› c2worksD, and since the failures of 
c1 and c2 are independent, the calculation is simply

Prob@c1works› c2worksD = Prob@c1worksD Prob@c2worksD.
Note that the probability of both c1 and c2 working for one year is the 
same as the probability that neither c1 nor c2 fail during the year.
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Since the components are wired in series, the system will fail if one or 
both of the components fails.  The probability that both components will 
work for one year is Prob@c1works› c2worksD, and since the failures of 
c1 and c2 are independent, the calculation is simply

Prob@c1works› c2worksD = Prob@c1worksD Prob@c2worksD.
Note that the probability of both c1 and c2 working for one year is the 
same as the probability that neither c1 nor c2 fail during the year.

Clear@probD;
prob@c1worksD = 0.93;
prob@c2worksD = 0.87;
prob@bothworkD = prob@c1worksD prob@c2worksD

0.8091

The probability that the system composed of both components wired in 
series will work for one year is 0.8091.

RC: 11/2/07:  Good.  Doing this computation in reverse, using failures:
Prob[ F1 ‹ F2 ] = one of the components fails
prob[F1 › F2] = both of the components fail
Prob[ F1 ‹ F2 ] = prob[F1] + prob[F2] – prob[F1 › F2]
Independence means:
prob[F1 › F2] = prob[F1] * prob[F2] 
Prob[ F1 ‹ F2 ] = 0.07 + 0.13 - (0.07*0.13) = 0.1909
Therefore, flipping it around, 
Prob[W1 › W2 ] = 1 - Prob[ F1 ‹ F2 ] = 1 - 0.1909 = 0.8091

1 - 0.1909

0.8091

·G.3.a.ii) Two not independent components in series

A system is built using two components wired together in series:
wire = Graphics@Line@88-4, 0<, 84, 0<<DD;
comp1 = Graphics@8LightSkyBlue, Polygon@88-3, -1<, 8-1, -1<, 8-1, 1<, 8-3, 1<<D<D;
comp2 = Graphics@8Gold, Polygon@883, -1<, 81, -1<, 81, 1<, 83, 1<<D<D;
labels = 8Graphics@Text@"comp 1", 8-2, 0<DD, Graphics@Text@"comp 2", 82, 0<DD<;
Show@wire, comp1, comp2, labelsD;
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comp 1 comp 2

Component 1 has probability 0.93 of working for one year.
Component 2 has probability 0.87 of working for one year.

Assuming that:
Prob[Component 2 fails, Given that Component1 fails] = p,

estimate the probability that the system composed of both components 
wired  in series will work for one year.
Again, if at least one component fails, the system fails.
The probability that at least one component fails is 
Prob@c1fails‹ c2failsD = Prob@F1 ‹ F2D and the probability that both 
components work is

Prob@bothworkD = Prob@W1 › W2D = 1 - Prob@F1 ‹ F2D
We know that

Prob@F1 ‹ F2D = F1 + F2 - F1 › F2
Because failure of the components is not independent,

prob@F1 › F2D ≠ prob@F1D prob@F2D.
Instead, using the conditional probability formula, you have

prob@F1 › F2D = prob@F1D prob@F2, givenF1D
So

Prob@W1 › W2D = 1 - HF1 + F2 - F1 › F2L
Prob@W1 › W2D = 1 - F1 - F2 + F1 › F2
Prob@W1 › W2D = 1 - F1 - F2 + Hprob@F1D prob@F2, givenF1DL

homework17_7.03.G3_All-1.nb 4



Clear@prob, bothworkD;
prob@F1D = 1 - 0.93
prob@F2D = 1 - 0.87
prob@F2, givenF1D = p

prob@bothworkD = 1 - H prob@F1D + prob@F2D - Hprob@F1D prob@F2, givenF1DL L
0.07

0.13

p

0.8 + 0.07 p

The probability that the system composed of both components wired  in 
series will work for one year if failure of the components is not 
independent is 0.8 + 0.07 p.

0.8 + 0.07 p ê. p Ø 0.5
0.8 + 0.07 p ê. p Ø 1

0.835

0.87

?? That can't be right.  Then the probability of the system working for 
one year would be higher than it was in G.3.a.i) with the assumption of 
independence.  Where did I go wrong?

0.07 * 0.13

0.0091

RC: 11/2/07:  Here are my computations
Prob[ F1 ‹ F2 ] = one of the components fails
prob[F1 › F2] = both of the components fail
Prob[ F1 ‹ F2 ] = prob[F1] + prob[F2] – prob[F1 › F2]
Now this formula says:  - prob[F1 › F2] means:  take away the times 
that both might be failing, i.e. we double-count the failing.
if independent, then prob[F1 › F2] = (0.07*0.13) ... a low probability 
that both fail simultaneously

non-Independence means: Conditional Probability Formula:
Prob@A, XgivenYD = Prob@A›Y, XDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅProb@Y, XD
Adapted to this problem:  Y = {0}  (failure), A = F1, X = F2
Prob[F1, F2 fails ] * Prob[F1] = Prob[F1›F2]

prob[F1 › F2] = prob[F1]  prob[F2,givenF1] = 0.07 * p  = potentially 
larger number = higher probability of failure of both.
(p = 0.13 is magic cutoff;  if p < 0.13, then simultaneous failure is less 
likely than independent;  
if p > 0.13, then simultaneous failure is more likely than independent)

For example, if p=1, this means that Prob[F1, F2 fails] = 1, so that if F2 
fails, F1 will certainly fail;
i.e. F1 is actually dependent upon F2.  i.e. F2 is at a power source, and 
if it dies, F1 dies.
So then the total contribution of "we double-counted the failing" is:  
0.07*1 = 0.07 = the prob[F1].
This makes sense since if F2 fails, F1 will fail, so the probability of 
0.07 for F1 failing will always
get counted twice.  

For example, if p=0.5, this means that Prob[F1, F2 fails] = 0.5, so that 
if F2 fails, F1 will fail 50% of the time.
i.e. F1 is  dependent upon F2 1/2 the time..
So then the total contribution of "we double-counted the failing" is:  
0.07*0.5 = 0.035 = 1/2 * the prob[F1].
This makes sense since if F2 fails, F1 will fail 1/2 of the time, so the 
probability of 0.07 for F1 failing will
get counted twice 1/2 of the time.

"Independence" is measured when the dependency of F1 on F2 is 
EXACTLY THE SAME as if there
was independence, i.e. Prob[F1, F2 fails] = 0.13.  In our minds, there is 
still dependency.  But from a probability
point of view, the dependency is the same measurement as if 
independent, i.e 0.07 * 0.13. This is what B4 and B5
are all talking about - measuring "independence".  In a physics 
environment, it might be difficult to determine
if two components are independent or not - the term "independent" is 
applied if you can measure their "counting
twice" to be exactly 0.07 * 0.13, i.e. Prob[F1, F2 fails] = Prob[F2].  

Prob[ F1 ‹ F2 ] = 0.07 + 0.13 - (0.07p) = 0.20 - 0.07p
Therefore, flipping it around, 
Prob[W1 › W2 ] = 1 - Prob[ F1 ‹ F2 ] = 1 - (0.20 - 0.07p) = 0.80 + 
0.07p
So your formula is correct.  Let's try to talk our way through it:

A series circuit only needs 1 to fail for the circuit to fail.  If p=1, then 
F1 is dependent upon F2.
Therefore, the working should be Prob[W2] = 0.87.
Does our formula match here?  0.80 + 0.07*1 = 0.87.
What about p=0.5?  
F1 will fail 50% of the time when F2 fails.
So failing should be:  0.07 (F1) + 0.13 (F2) - 0.07(0.5) (counting twice 
those dependent failures, which are high) = 0.165
So working = 1 - 0.165 = 0.835
Under independence, working is 80.91%.  So the circuit being 
dependent at 50% means the probability of working
is higher - 83.5% - than for 2 independent circuits.  This is because the 
independent failure of F1 is so low.

When we have a dependent condition, like p=0.5, 
it is not like F1 fails more.  
F1 fails at 7% and that's it.
The question is:  how much of the 7% is due to F2 failing?  Because we 
should not count 
these "both failed" situations twice.  If p=0.5, then 0.07*p is the amount 
of F1 failing because of F2 failing ---
3.5% of F1's failing was on its own, but 3.5% of F1's failing was 
because of F2, so for a series circuit,
we should not count this second 3.5% twice.  In this way, one can think 
of the calculation at:
3.5% F1 failure + 13% F2 failure = 16.5% failure -->  working 1- 0.165 = 83.5%Yes, better than the independent probability.    F2 will fail only 13% of the time, andF1 will fail - well, 7% of the time, but 50% of that failure is due to F2 failing, soit really only will fail 3.5% of the time (without F2 failing).  
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RC: 11/2/07:  Here are my computations
Prob[ F1 ‹ F2 ] = one of the components fails
prob[F1 › F2] = both of the components fail
Prob[ F1 ‹ F2 ] = prob[F1] + prob[F2] – prob[F1 › F2]
Now this formula says:  - prob[F1 › F2] means:  take away the times 
that both might be failing, i.e. we double-count the failing.
if independent, then prob[F1 › F2] = (0.07*0.13) ... a low probability 
that both fail simultaneously

non-Independence means: Conditional Probability Formula:
Prob@A, XgivenYD = Prob@A›Y, XDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅProb@Y, XD
Adapted to this problem:  Y = {0}  (failure), A = F1, X = F2
Prob[F1, F2 fails ] * Prob[F1] = Prob[F1›F2]

prob[F1 › F2] = prob[F1]  prob[F2,givenF1] = 0.07 * p  = potentially 
larger number = higher probability of failure of both.
(p = 0.13 is magic cutoff;  if p < 0.13, then simultaneous failure is less 
likely than independent;  
if p > 0.13, then simultaneous failure is more likely than independent)

For example, if p=1, this means that Prob[F1, F2 fails] = 1, so that if F2 
fails, F1 will certainly fail;
i.e. F1 is actually dependent upon F2.  i.e. F2 is at a power source, and 
if it dies, F1 dies.
So then the total contribution of "we double-counted the failing" is:  
0.07*1 = 0.07 = the prob[F1].
This makes sense since if F2 fails, F1 will fail, so the probability of 
0.07 for F1 failing will always
get counted twice.  

For example, if p=0.5, this means that Prob[F1, F2 fails] = 0.5, so that 
if F2 fails, F1 will fail 50% of the time.
i.e. F1 is  dependent upon F2 1/2 the time..
So then the total contribution of "we double-counted the failing" is:  
0.07*0.5 = 0.035 = 1/2 * the prob[F1].
This makes sense since if F2 fails, F1 will fail 1/2 of the time, so the 
probability of 0.07 for F1 failing will
get counted twice 1/2 of the time.

"Independence" is measured when the dependency of F1 on F2 is 
EXACTLY THE SAME as if there
was independence, i.e. Prob[F1, F2 fails] = 0.13.  In our minds, there is 
still dependency.  But from a probability
point of view, the dependency is the same measurement as if 
independent, i.e 0.07 * 0.13. This is what B4 and B5
are all talking about - measuring "independence".  In a physics 
environment, it might be difficult to determine
if two components are independent or not - the term "independent" is 
applied if you can measure their "counting
twice" to be exactly 0.07 * 0.13, i.e. Prob[F1, F2 fails] = Prob[F2].  

Prob[ F1 ‹ F2 ] = 0.07 + 0.13 - (0.07p) = 0.20 - 0.07p
Therefore, flipping it around, 
Prob[W1 › W2 ] = 1 - Prob[ F1 ‹ F2 ] = 1 - (0.20 - 0.07p) = 0.80 + 
0.07p
So your formula is correct.  Let's try to talk our way through it:

A series circuit only needs 1 to fail for the circuit to fail.  If p=1, then 
F1 is dependent upon F2.
Therefore, the working should be Prob[W2] = 0.87.
Does our formula match here?  0.80 + 0.07*1 = 0.87.
What about p=0.5?  
F1 will fail 50% of the time when F2 fails.
So failing should be:  0.07 (F1) + 0.13 (F2) - 0.07(0.5) (counting twice 
those dependent failures, which are high) = 0.165
So working = 1 - 0.165 = 0.835
Under independence, working is 80.91%.  So the circuit being 
dependent at 50% means the probability of working
is higher - 83.5% - than for 2 independent circuits.  This is because the 
independent failure of F1 is so low.

When we have a dependent condition, like p=0.5, 
it is not like F1 fails more.  
F1 fails at 7% and that's it.
The question is:  how much of the 7% is due to F2 failing?  Because we 
should not count 
these "both failed" situations twice.  If p=0.5, then 0.07*p is the amount 
of F1 failing because of F2 failing ---
3.5% of F1's failing was on its own, but 3.5% of F1's failing was 
because of F2, so for a series circuit,
we should not count this second 3.5% twice.  In this way, one can think 
of the calculation at:
3.5% F1 failure + 13% F2 failure = 16.5% failure -->  working 1- 0.165 
= 83.5%
Yes, better than the independent probability.    F2 will fail only 13% of 
the time, and
F1 will fail - well, 7% of the time, but 50% of that failure is due to F2 
failing, so
it really only will fail 3.5% of the time (without F2 failing).  
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RC: 11/2/07:  Here are my computations
Prob[ F1 ‹ F2 ] = one of the components fails
prob[F1 › F2] = both of the components fail
Prob[ F1 ‹ F2 ] = prob[F1] + prob[F2] – prob[F1 › F2]
Now this formula says:  - prob[F1 › F2] means:  take away the times 
that both might be failing, i.e. we double-count the failing.
if independent, then prob[F1 › F2] = (0.07*0.13) ... a low probability 
that both fail simultaneously

non-Independence means: Conditional Probability Formula:
Prob@A, XgivenYD = Prob@A›Y, XDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅProb@Y, XD
Adapted to this problem:  Y = {0}  (failure), A = F1, X = F2
Prob[F1, F2 fails ] * Prob[F1] = Prob[F1›F2]

prob[F1 › F2] = prob[F1]  prob[F2,givenF1] = 0.07 * p  = potentially 
larger number = higher probability of failure of both.
(p = 0.13 is magic cutoff;  if p < 0.13, then simultaneous failure is less 
likely than independent;  
if p > 0.13, then simultaneous failure is more likely than independent)

For example, if p=1, this means that Prob[F1, F2 fails] = 1, so that if F2 
fails, F1 will certainly fail;
i.e. F1 is actually dependent upon F2.  i.e. F2 is at a power source, and 
if it dies, F1 dies.
So then the total contribution of "we double-counted the failing" is:  
0.07*1 = 0.07 = the prob[F1].
This makes sense since if F2 fails, F1 will fail, so the probability of 
0.07 for F1 failing will always
get counted twice.  

For example, if p=0.5, this means that Prob[F1, F2 fails] = 0.5, so that 
if F2 fails, F1 will fail 50% of the time.
i.e. F1 is  dependent upon F2 1/2 the time..
So then the total contribution of "we double-counted the failing" is:  
0.07*0.5 = 0.035 = 1/2 * the prob[F1].
This makes sense since if F2 fails, F1 will fail 1/2 of the time, so the 
probability of 0.07 for F1 failing will
get counted twice 1/2 of the time.

"Independence" is measured when the dependency of F1 on F2 is 
EXACTLY THE SAME as if there
was independence, i.e. Prob[F1, F2 fails] = 0.13.  In our minds, there is 
still dependency.  But from a probability
point of view, the dependency is the same measurement as if 
independent, i.e 0.07 * 0.13. This is what B4 and B5
are all talking about - measuring "independence".  In a physics 
environment, it might be difficult to determine
if two components are independent or not - the term "independent" is 
applied if you can measure their "counting
twice" to be exactly 0.07 * 0.13, i.e. Prob[F1, F2 fails] = Prob[F2].  

Prob[ F1 ‹ F2 ] = 0.07 + 0.13 - (0.07p) = 0.20 - 0.07p
Therefore, flipping it around, 
Prob[W1 › W2 ] = 1 - Prob[ F1 ‹ F2 ] = 1 - (0.20 - 0.07p) = 0.80 + 
0.07p
So your formula is correct.  Let's try to talk our way through it:

A series circuit only needs 1 to fail for the circuit to fail.  If p=1, then 
F1 is dependent upon F2.
Therefore, the working should be Prob[W2] = 0.87.
Does our formula match here?  0.80 + 0.07*1 = 0.87.
What about p=0.5?  
F1 will fail 50% of the time when F2 fails.
So failing should be:  0.07 (F1) + 0.13 (F2) - 0.07(0.5) (counting twice 
those dependent failures, which are high) = 0.165
So working = 1 - 0.165 = 0.835
Under independence, working is 80.91%.  So the circuit being 
dependent at 50% means the probability of working
is higher - 83.5% - than for 2 independent circuits.  This is because the 
independent failure of F1 is so low.

When we have a dependent condition, like p=0.5, 
it is not like F1 fails more.  
F1 fails at 7% and that's it.
The question is:  how much of the 7% is due to F2 failing?  Because we 
should not count 
these "both failed" situations twice.  If p=0.5, then 0.07*p is the amount 
of F1 failing because of F2 failing ---
3.5% of F1's failing was on its own, but 3.5% of F1's failing was 
because of F2, so for a series circuit,
we should not count this second 3.5% twice.  In this way, one can think 
of the calculation at:
3.5% F1 failure + 13% F2 failure = 16.5% failure -->  working 1- 0.165 
= 83.5%
Yes, better than the independent probability.    F2 will fail only 13% of 
the time, and
F1 will fail - well, 7% of the time, but 50% of that failure is due to F2 
failing, so
it really only will fail 3.5% of the time (without F2 failing).  
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RC: 11/2/07:  Here are my computations
Prob[ F1 ‹ F2 ] = one of the components fails
prob[F1 › F2] = both of the components fail
Prob[ F1 ‹ F2 ] = prob[F1] + prob[F2] – prob[F1 › F2]
Now this formula says:  - prob[F1 › F2] means:  take away the times 
that both might be failing, i.e. we double-count the failing.
if independent, then prob[F1 › F2] = (0.07*0.13) ... a low probability 
that both fail simultaneously

non-Independence means: Conditional Probability Formula:
Prob@A, XgivenYD = Prob@A›Y, XDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅProb@Y, XD
Adapted to this problem:  Y = {0}  (failure), A = F1, X = F2
Prob[F1, F2 fails ] * Prob[F1] = Prob[F1›F2]

prob[F1 › F2] = prob[F1]  prob[F2,givenF1] = 0.07 * p  = potentially 
larger number = higher probability of failure of both.
(p = 0.13 is magic cutoff;  if p < 0.13, then simultaneous failure is less 
likely than independent;  
if p > 0.13, then simultaneous failure is more likely than independent)

For example, if p=1, this means that Prob[F1, F2 fails] = 1, so that if F2 
fails, F1 will certainly fail;
i.e. F1 is actually dependent upon F2.  i.e. F2 is at a power source, and 
if it dies, F1 dies.
So then the total contribution of "we double-counted the failing" is:  
0.07*1 = 0.07 = the prob[F1].
This makes sense since if F2 fails, F1 will fail, so the probability of 
0.07 for F1 failing will always
get counted twice.  

For example, if p=0.5, this means that Prob[F1, F2 fails] = 0.5, so that 
if F2 fails, F1 will fail 50% of the time.
i.e. F1 is  dependent upon F2 1/2 the time..
So then the total contribution of "we double-counted the failing" is:  
0.07*0.5 = 0.035 = 1/2 * the prob[F1].
This makes sense since if F2 fails, F1 will fail 1/2 of the time, so the 
probability of 0.07 for F1 failing will
get counted twice 1/2 of the time.

"Independence" is measured when the dependency of F1 on F2 is 
EXACTLY THE SAME as if there
was independence, i.e. Prob[F1, F2 fails] = 0.13.  In our minds, there is 
still dependency.  But from a probability
point of view, the dependency is the same measurement as if 
independent, i.e 0.07 * 0.13. This is what B4 and B5
are all talking about - measuring "independence".  In a physics 
environment, it might be difficult to determine
if two components are independent or not - the term "independent" is 
applied if you can measure their "counting
twice" to be exactly 0.07 * 0.13, i.e. Prob[F1, F2 fails] = Prob[F2].  

Prob[ F1 ‹ F2 ] = 0.07 + 0.13 - (0.07p) = 0.20 - 0.07p
Therefore, flipping it around, 
Prob[W1 › W2 ] = 1 - Prob[ F1 ‹ F2 ] = 1 - (0.20 - 0.07p) = 0.80 + 
0.07p
So your formula is correct.  Let's try to talk our way through it:

A series circuit only needs 1 to fail for the circuit to fail.  If p=1, then 
F1 is dependent upon F2.
Therefore, the working should be Prob[W2] = 0.87.
Does our formula match here?  0.80 + 0.07*1 = 0.87.
What about p=0.5?  
F1 will fail 50% of the time when F2 fails.
So failing should be:  0.07 (F1) + 0.13 (F2) - 0.07(0.5) (counting twice 
those dependent failures, which are high) = 0.165
So working = 1 - 0.165 = 0.835
Under independence, working is 80.91%.  So the circuit being 
dependent at 50% means the probability of working
is higher - 83.5% - than for 2 independent circuits.  This is because the 
independent failure of F1 is so low.

When we have a dependent condition, like p=0.5, 
it is not like F1 fails more.  
F1 fails at 7% and that's it.
The question is:  how much of the 7% is due to F2 failing?  Because we 
should not count 
these "both failed" situations twice.  If p=0.5, then 0.07*p is the amount 
of F1 failing because of F2 failing ---
3.5% of F1's failing was on its own, but 3.5% of F1's failing was 
because of F2, so for a series circuit,
we should not count this second 3.5% twice.  In this way, one can think 
of the calculation at:
3.5% F1 failure + 13% F2 failure = 16.5% failure -->  working 1- 0.165 
= 83.5%
Yes, better than the independent probability.    F2 will fail only 13% of 
the time, and
F1 will fail - well, 7% of the time, but 50% of that failure is due to F2 
failing, so
it really only will fail 3.5% of the time (without F2 failing).  

0.05 + 0.2 - 0.05 * 0.2
1 - H0.165L

0.24

0.835

MCB 11/5/07:  Thanks, that does clear it up.  What confused me was 
not seeing that the dependent failure was part of the total failure rate 
for the dependent component, not in addition to it.  When I first 
approached the problem I was trying to break it down by separating 
prob@F2, givenF1D from prob@F2, NOT givenF1D but just got muddled.  
Now it makes sense.

RC: 11/5/07:  Took me a few minutes (like a few hours) to sort it out in 
my head, too.

·G.3.b.i) Two independent components in parallel

A system is built using two components wired together in parallel:
wire = 8Graphics@Line@880, 0<, 84, 0<<DD, Graphics@Line@880, 3<, 84, 3<<DD,
Graphics@Line@880, 0<, 80, 3<<DD, Graphics@Line@884, 0<, 84, 3<<DD,
Graphics@Line@88-2, 1.5<, 80, 1.5<<DD, Graphics@Line@884, 1.5<, 86, 1.5<<DD<;
comp1 = Graphics@8LightSkyBlue, Polygon@883, 2<, 81, 2<, 81, 4<, 83, 4<<D<D;
comp2 = Graphics@8Gold, Polygon@883, -1<, 81, -1<, 81, 1<, 83, 1<<D<D;
labels = 8Graphics@Text@"comp 1", 82, 3<DD, Graphics@Text@"comp 2", 82, 0<DD<;
Show@wire, comp1, comp2, labelsD;
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comp 1

comp 2

Component 1 has probability 0.93 of working for one year.
Component 2 has probability 0.91 of working for one year.

Assuming that failures of the components are independent, estimate the 
probability that the system composed of both components wired in 
parallel will work for one year.
Because the components are wired in parallel, the system will work if at 
least one component works.

Prob[at least one works] = Prob[c1works or c2works or 
c1andc2work]

Prob[at least one works] = prob@W1 ‹ W2D
Prob[at least one works] = 

prob@W1D + prob@W2D – prob@W1 › W2D (because there is overlap)
If failures of the components are independent, the probability of no failures 
(prob@W1 › W2D) is

prob@W1 › W2D = prob@W1D prob@W2D
So prob@W1 ‹ W2D = prob@W1D + prob@W2D – prob@W1D prob@W2D

Clear@probD;
prob@W1D = 0.93;
prob@W2D = 0.91;
prob@W1unionW2D = prob@W1D + prob@W2D - Hprob@W1D prob@W2DL
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0.9937

The probability that the system composed of both components wired in 
parallel will work for one year is 0.9937.

RC: 11/5/07:  Parallel is must easier:  both must fail.

·G.3.b.ii) Two non-independent components in parallel

A system is built using two components wired together in parallel:
wire = 8Graphics@Line@880, 0<, 84, 0<<DD, Graphics@Line@880, 3<, 84, 3<<DD,
Graphics@Line@880, 0<, 80, 3<<DD, Graphics@Line@884, 0<, 84, 3<<DD,
Graphics@Line@88-2, 1.5<, 80, 1.5<<DD, Graphics@Line@884, 1.5<, 86, 1.5<<DD<;
comp1 = Graphics@8LightSkyBlue, Polygon@883, 2<, 81, 2<, 81, 4<, 83, 4<<D<D;
comp2 = Graphics@8Gold, Polygon@883, -1<, 81, -1<, 81, 1<, 83, 1<<D<D;
labels = 8Graphics@Text@"comp 1", 82, 3<DD, Graphics@Text@"comp 2", 82, 0<DD<;
Show@wire, comp1, comp2, labelsD;

comp 1

comp 2

Component 1 has probability 0.93 of working for one year.
Component 2 has probability 0.91 of working for one year.

Assuming that:
Prob[Component2 fails, Given that Component1 fails] = 0.55,

estimate the probability that the system composed of both components 
wired in parallel will work for one year.
Because the components are wired in parallel, the system will work if at 
least one component works.  This is the same as saying that the system will 
only fail if both components fail.

Prob[both c1 and c2 fail] = prob@F1 › F2D
Prob[at least one component works] = 1 - prob@F1 › F2D

Because failure of the components is not independent,
prob@F1 › F2D ≠ prob@F1D prob@F2D.

Instead, using the conditional probability formula, you have
prob@F1 › F2D = prob@F1D prob@F2, givenF1D

So 1 - prob@F1 › F2D = 1 - Hprob@F1D prob@F2, givenF1DL
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Because the components are wired in parallel, the system will work if at 
least one component works.  This is the same as saying that the system will 
only fail if both components fail.

Prob[both c1 and c2 fail] = prob@F1 › F2D
Prob[at least one component works] = 1 - prob@F1 › F2D

Because failure of the components is not independent,
prob@F1 › F2D ≠ prob@F1D prob@F2D.

Instead, using the conditional probability formula, you have
prob@F1 › F2D = prob@F1D prob@F2, givenF1D

So 1 - prob@F1 › F2D = 1 - Hprob@F1D prob@F2, givenF1DL
Clear@probD;
prob@F1D = 1 - 0.93
prob@F2D = 1 - 0.91
prob@F2, givenF1D = 0.55;
prob@F1intersectF2D = 1 - Hprob@F1D prob@F2, givenF1DL

0.07

0.09

0.9615

The probability that the system composed of both components wired in 
parallel will work for one year if component failure is not independent is 
0.9615.  Note that for components wired in parallel, dependence decreases 
the probability that the system will work for one year by increasing the 
probability that both components will fail.

Clear@F1, F2D;
8F1, F2< = 80.07, 0.09<;
F1 * F2
F2givenF1 = 0.55;
F1 * F2givenF1

0.0063

0.0385

The possible extremes here are:
• c2 always fails if c1 fails (complete dependence)

Then prob@F2, givenF1D = 1
Probability that both c1 and c2 fail is 

F1 › F2 = F1 HF2, givenF1L = F1 H1L = F1
F1 › F2 = 0.07

• c2 fails at the same rate regardless of whether c1 fails (complete 
independence)

Then prob@F2, givenF1D = prob@F2, not given F1D = F2
Probability that both c1 and c2 fail is 

F1 › F2 = F1 HF2, givenF1L = F1 HF2, not given F1L = F1 * F2
F1 › F2 = 0.07 * 0.09 = 0.0063

Note that prob@F2, givenF1D can not be lower than 
prob@F2, independent of F1D = F2.  But if there is any dependence at all,

prob@F2, givenF1D > prob@F2, independent of F1D = F2
so F1 › F2 = F1 HF2, givenF1L > 
F1 › F2 = F1 HF2, independent of F1L = F1 * F2
and F1 HF2, independent of F1L § F1 › F2 § F1 HF2, givenF1L

Also note that prob@F2, givenF1D includes both the probability that c2 fails 
because c1 fails, and the probability that c2 fails independently of c1.  In 
other words,

prob@F2, givenF1D = prob@F2, independent of F1D + prob@F2, caused by F1D.
So if you know the probability that c2 fails by itself (independently of c1), 
you can calculate the probability that c1 causes c2 to fail:

prob@F2, caused by F1D = prob@F2, givenF1D - prob@F2, independent of F1D.
Even in the extreme case that prob@F2, givenF1D = 1 (complete 
dependence), it is very unlikely that 100% of c2 failures are caused by c1 
failing; c1 must fail on its own sometimes, even if the probability is very 
low.
In the current example, 

prob@F2, independent of F1D = F2 = 0.09
prob@F2, givenF1D = 0.55
prob@F2, caused by F1D = 0.55 - 0.09 = 0.46
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prob@F2, caused by F1D = prob@F2, givenF1D - prob@F2, independent of F1D.
Even in the extreme case that prob@F2, givenF1D = 1 (complete 
dependence), it is very unlikely that 100% of c2 failures are caused by c1 
failing; c1 must fail on its own sometimes, even if the probability is very 
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The possible extremes here are:
• c2 always fails if c1 fails (complete dependence)

Then prob@F2, givenF1D = 1
Probability that both c1 and c2 fail is 

F1 › F2 = F1 HF2, givenF1L = F1 H1L = F1
F1 › F2 = 0.07

• c2 fails at the same rate regardless of whether c1 fails (complete 
independence)

Then prob@F2, givenF1D = prob@F2, not given F1D = F2
Probability that both c1 and c2 fail is 

F1 › F2 = F1 HF2, givenF1L = F1 HF2, not given F1L = F1 * F2
F1 › F2 = 0.07 * 0.09 = 0.0063

Note that prob@F2, givenF1D can not be lower than 
prob@F2, independent of F1D = F2.  But if there is any dependence at all,

prob@F2, givenF1D > prob@F2, independent of F1D = F2
so F1 › F2 = F1 HF2, givenF1L > 
F1 › F2 = F1 HF2, independent of F1L = F1 * F2
and F1 HF2, independent of F1L § F1 › F2 § F1 HF2, givenF1L

Also note that prob@F2, givenF1D includes both the probability that c2 fails 
because c1 fails, and the probability that c2 fails independently of c1.  In 
other words,

prob@F2, givenF1D = prob@F2, independent of F1D + prob@F2, caused by F1D.
So if you know the probability that c2 fails by itself (independently of c1), 
you can calculate the probability that c1 causes c2 to fail:

prob@F2, caused by F1D = prob@F2, givenF1D - prob@F2, independent of F1D.
Even in the extreme case that prob@F2, givenF1D = 1 (complete 
dependence), it is very unlikely that 100% of c2 failures are caused by c1 
failing; c1 must fail on its own sometimes, even if the probability is very 
low.
In the current example, 

prob@F2, independent of F1D = F2 = 0.09
prob@F2, givenF1D = 0.55
prob@F2, caused by F1D = 0.55 - 0.09 = 0.46

RC: 11/5/07:  Looks good to me.  "Independence" to probability people 
is p = prob[F2] / prob[F1].  Not real independence, but just "in terms of 
the numbers, it is just the same computation as independence".  Of 
course, to a logician, this is a painful use of language.

G.4) Dicey calculations

G.5) Probability calculations in context:
Tattoos and tongue rings

G.6) Probability calculations in context:
False positives in breast cancer tests

G.7) Independence

G.8) Probability calculations in context:  
Probability and aces

G.9) Probability calculations in context:
Info you can use when you go to Vegas and hit the craps table

G.10) Probability calculations in context:
Gambler's ruin: Some things every serious gambler should know

G.11) Probability calculations in context:
 The birthday problem

G.12) Randall Swift's eighteen sided computer dice
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G.13) Actuarial exam probability problems from the Society of Actuaries
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