

Introduction to Statistics

Authors : Bruce Carpenter, Bill Davis, Michael Raschke and Jerry Uhl Publisher: Math Everywhere, Inc. Distributor \& Translator: MathMonkeys, LLC Adapted from Prob/Stat by : Robert Curtis.

STAT. 01 Simulations

Tutorials T1

Experience with the starred problems will be useful for understanding developme
$\%$ Graphics Primitives
\rightarrow The variables (x, s, t, z, y) are independent of each other $\boldsymbol{\nabla}$.
T.1) Monte Carlo estimation of area measurements

John von Neumann and Stanislaw Ulam were great mathematicians of the early to midtwentieth century.
Working together on the original atomic bomb in the 1940's, they devised the Monte Carlo method for doing approximate calculation for problems intractable by hand.
You'll see many Monte Carlo simulations in this course.
© T.1.a)
Monte Carlo estimation of the area of geometric objects Here's a nice triangle, defined via the function $f(x)$ and the x-axis below, whose area we can calculate easily using our geometric area formulas from high school geometry.

O

- xlow $=0$
- xhigh $=10$
- $f(x)=\left\{\begin{array}{cc}3 z & (z<4) \\ -2 z+20 & (x \geq 4)\end{array}\right.$
- $y=f(x)$

$0 \ldots 11$ = left...right Stretch to Fit $\boldsymbol{\nabla}$
$-0.4 \ldots 14$ = bottom...top cropping
Moderately $\boldsymbol{\nabla}$
\% Graph Building Blocks
\downarrow Curve at $(x, f[x])$ where $x=x$ low... xhigh
with a extra heavy ∇ line, colored Other... ∇
Let A be the area of this triangle, computed by via $A=1 / 2$ * base :

$$
A=1 / 2 *(x h i g h-x l o w) * f(4)=1 / 2 *(10) * 12=60
$$

$\bigcirc \geqslant$

- xlow $=0$
- xhigh $=10$
(-f $f(x)=\left\{\begin{array}{cc}3 x & (x<4) \\ -2 x+20 & (x \geq 4)\end{array}\right.$
$\bigcirc y=f(x)$

Use uniformly distributed points and the Monte Carlo method to co the measurement of the area between the plotted curve and the x.

Answer

\geqslant Put a box around everything:
$\bigcirc \geqslant$
\bullet xlow $=0 \quad$ xhigh $=10$
\bullet ylow $=0 \quad$ yhigh $=15$
(-) $f(x)=\left\{\begin{array}{cc}3 \& & (x<4) \\ -2 x+20 & (z \geq 4)\end{array}\right.$

- $y=f(x)$

\geqslant Your box does not have to touch everything in the area under measureme But, the area under measurement must be inside your box.
) Generate 3000 uniformly distributed random points inside the bo
- xlow $=0$ xhigh $=10$
- ylow $=0$ yhigh $=15$
(-f $f(x)=\left\{\begin{array}{cc}3 z & (z<4) \\ -2 z+20 & (x \geq 4)\end{array}\right.$
$\square x=$ Random (xlow, xhigh)

$\square y=$ Random (ylow, yhigh)
:

Break the random points $\{x, y\}$ into two separate groups:

1) pointsunder $=$ those points $\{x, y\}$ under or on the curve and
2) pointsover $=$ those points $\{x, y\}$ over the curve

$\bigcirc \geqslant$

- xlow $=0$ xhigh $=10$
- ylow $=0$ yhigh $=15$
(-) $f(x)=\left\{\begin{array}{cc}3 x & (x<4) \\ -2 x+20 & (x \geq 4)\end{array}\right.$
$\square x=$ Random (xlow, xhigh)

$\square y=$ Random (ylow, yhigh)

pointsunder consists of the points $\{x, y\}$ for which $y \leq f[x]$. pointsover consists of the points $\{x, y\}$ for which $y>f[x]$.

ק The Monte carlo idea:

Because the random points are approximately uniformly distribute,
$\frac{\text { A }}{\text { Area enclosed by the box }} \approx \frac{\text { Number of random points under curv }}{\text { Total number of random points inside }}$ so that:

$$
A \approx\left(\frac{\text { Number of random points under curve }}{\text { Total number of random points inside box }}\right) \text { (Area }
$$

Try it out:

\bigcirc

- plow $=0$ xhigh $=10$
- glow $=0$ yhigh $=15$
(1) $f(z)=\left\{\begin{array}{cc}3 z & (x<4) \\ -2 z+20 & (z \geq 4)\end{array}\right.$
$\square x=$ Random (slow, xhigh)

$\square y=$ Random (glow, yhigh)

\square UnderCount $=\sum_{k=1}^{3000}(y \operatorname{RanNums}[k] \leq f[\operatorname{xRanNums}\{k\}])$
\triangle UnderCount $=1184$ Calculate
\square BoxArea $=($ xhigh - slow $)($ yhigh - slow $)$
\triangle BoxArea $=150$ Calculate
UnderCount
3000 BoxArea
$\triangle \frac{\text { UnderCount }}{3000}$ BoxArea $=\frac{296}{5} \quad$ Substitute
$\triangle \frac{\text { UnderCount }}{3000}$ BoxArea $=59.2$ Calculate
$\triangle \frac{\text { UnderCount }}{3000}$ BoxArea $=\frac{296}{5}$ Substitute
$\triangle \frac{\text { UnderCount }}{3000}$ BoxArea $=59.2 \quad$ Calculate

Run 9 more Monte Carlo experiments, each involving 1000 indepı

- xlow $=0$ xhigh $=10$
- ylow $=0$ yhigh $=15$
(-) $f(x)=\left\{\begin{array}{cc}3 z & (x<4) \\ -2 x+20 & (x \geq 4)\end{array}\right.$
$\square x=$ Random (xlow, xhigh)

:
\%:": Tabulate x RanNums ${ }_{4}$ with

:": Tabulate xRanNums ${ }_{9}$ with
$\square y=$ Random (ylow, yhigh)
:i: Tabulate yRanNums ${ }_{1}$ with

© UnderCount ${ }_{1}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $_{1}[k] \leq f\left[\right.$ xRanNums $\left.\left._{1}\{k\}\right]\right)$
\triangle UnderCount $_{1}=413$ Calculate
- UnderCount ${ }_{2}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $_{2}[k] \leq f\left[\right.$ xRanNums $\left.\left._{2}\{k\}\right]\right)$
\triangle UnderCount $_{2}=401$ Calculate
- UnderCount ${ }_{3}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $_{3}[k] \leq f\left[\right.$ xRanNums $\left.\left._{3}\{k\}\right]\right)$ \triangle UnderCount $_{3}=418 \quad$ Calculate
© UnderCount $4_{4}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $\left._{4}[k] \leq f\left[\operatorname{xRanNums}_{4}\{k\}\right]\right)$ \triangle UnderCount $_{4}=390 \quad$ Calculate
© UnderCount ${ }_{5}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $\left._{5}[k] \leq f\left[\operatorname{xRanNums}_{5}\{k\}\right]\right)$ \triangle UnderCount $_{5}=410 \quad$ Calculate
© UnderCount ${ }_{6}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $_{6}[k] \leq f\left[\right.$ xRanNums $\left.\left._{6}\{k\}\right]\right)$ \triangle UnderCount $_{6}=409$ Calculate
© UnderCount ${ }_{7}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $_{7}[k] \leq f\left[\right.$ xRanNums $\left.\left._{7}\{k\}\right]\right)$ \triangle UnderCount $_{7}=387$ Calculate
- UnderCount ${ }_{8}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $_{8}[k] \leq f\left[\right.$ xRanNums $\left.\left._{8}\{k\}\right]\right)$ \triangle UnderCount $_{8}=405 \quad$ Calculate
- UnderCount ${ }_{9}=\sum_{k=1}^{1000}\left(\right.$ yRanNums $\left._{9}[k] \leq f\left[\operatorname{xRanNums}_{9}\{k\}\right]\right)$
\triangle UnderCount $_{9}=400 \quad$ Calculate
- BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
\triangle BoxArea $=150 \quad$ Calculate
- Estimate ${ }_{1}=\frac{\text { UnderCount }_{1}}{1000}$ BoxArea
\triangle Estimate $_{1}=61.95$ Calculate
- Estimate ${ }_{2}=\frac{\text { UnderCount }_{2}}{1000}$ BoxArea
\triangle Estimate $_{2}=60.15 \quad$ Calculate
- Estimate ${ }_{3}=\frac{\text { UnderCount }_{3}}{1000}$ BoxArea
\triangle Estimate $_{3}=62.7 \quad$ Calculate
- Estimate $4=\frac{\text { UnderCount }_{4}}{1000}$ BoxArea
\triangle Estimate $_{4}=58.5 \quad$ Calculate
- Estimate ${ }_{5}=\frac{\text { UnderCount }_{5}}{1000}$ BoxArea
\triangle Estimate $_{5}=61.5 \quad$ Calculate
- Estimate ${ }_{6}=\frac{\text { UnderCount }_{6}}{1000}$ BoxArea
\triangle Estimate $_{6}=61.35 \quad$ Calculate
- Estimate $_{7}=\frac{\text { UnderCount }_{7}}{1000}$ BoxArea
\triangle Estimate $_{7}=58.05 \quad$ Calculate
- Estimate ${ }_{8}=\frac{\text { UnderCount }_{8}}{1000}$ BoxArea
\triangle Estimate $_{8}=60.75$ Calculate
- Estimate ${ }_{9}=\frac{\text { UnderCount }_{9}}{1000}$ BoxArea
\triangle Estimate $_{9}=60 \quad$ Calculate
\geqslant Look at the average of the 10 Monte Carlo estimates:
\square Average $=\frac{\sum_{k=1}^{9} \text { Estimate }_{k}}{9}$
\triangle Average $=\frac{1}{9}$ Estimate $_{9}+\frac{1}{9}$ Estimate $_{8}+\frac{1}{9}$ Estimate $_{7}+\frac{1}{9}$ Estimate
\triangle Average $=60.55$ Calculate
Compare with the actual value of A
as calculated by LiveMath:
$\bigcirc \geqslant$
- xlow $=0$ xhigh $=10$
- ylow $=0$ yhigh $=8.5$
(-) $f(x)=\left\{\begin{array}{cc}3 x & (x<4) \\ -2 x+20 & (x \geq 4)\end{array}\right.$
$\square A=\frac{1}{2}($ xhigh - xlow $) f(4)$
$\triangle A=60 \quad$ Calculate
ק The Law of Large numbers says:
If your experience was typical, then the average of these Monte (estimates is a close enough approximation of A
for most government work.
© T.1.b) Monte Carlo estimation of another area measurement

Here is a non-regular hexagon. Non-regular refers to the fact that the sides of this hexagon are not equal. A Bee would never made such an ugly honeycomb because they would not stack nicely together.
We can find the area of this non-regular hexagon by slicing up the geometric region into triangles, each of which we can compute the area of easily.

- xlow $=-2$
- xhigh = 2
- $V=([-2,0],[-1,2],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$

Use uniformly distributed points and the Monte Carlo method to estimate the measurement of the area enclosed by the non-regı
\% Answer
First we need to measure the area of this non-regular hexagon using basic geometric formulas. The easiest way to accumulate this area is by splitting up this non-regular hexagon into sub-triangles and sub-trapezoids. Remember these basic area formulas from high school geometry
\square AreaTriangle $=\frac{1}{2}(b h)$
\square AreaTrapezoid $=\frac{1}{2} b\left(h_{1}+h_{2}\right)$
$\geqslant h_{1}$ and h_{2} are the heights of each side of the trapezoid
ק Here is the split up of this non-regular hexagon:
\bigcirc

- xlow $=-2$
- xhigh $=2$
$\bullet V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$

© We manually read off the area formulas for these 6 geometric regions:
$\bigcirc{ }^{-}$
O Pst Triangle
$\square b=1$
$\square h=1.5$
$\square A_{1}=\frac{1}{2} b h$
$\triangle A_{1}=0.75 \quad$ Substitute
O 2nd Trapezoid
$\square b=2$
$\square h_{1}=1.5$
$\square h_{2}=1.1$
$\square A_{2}=\frac{1}{2} b\left(h_{1}+h_{2}\right)$
$\Delta A_{2}=2.6 \quad$ Substitute
O 3rd Triangle
$\square b=1$
$\square h=1.1$
$\square A_{3}=\frac{1}{2} b h$
$\Delta A_{3}=0.55 \quad$ Substitute
O th Triangle
$\square b=0.7$
$\square h=1$

$$
\begin{aligned}
& \square A_{4}=\frac{1}{2} b h \\
& \triangle A_{4}=0.35 \text { Substitute } \\
& \bigcirc \text { th Trapezoid } \\
& \square b=1.3-(-0.5) \\
& \square h_{1}=1.4 \\
& \square h_{2}=1 \\
& \square A_{5}=\frac{1}{2} b\left(h_{1}+h_{2}\right) \\
& \triangle A_{5}=2.16 \text { Substitute } \\
& \bigcirc \text { th Triangle } \\
& \square b=1.5 \\
& h=1.4 \\
& \square A_{6}=\frac{1}{2} b h \\
& \Delta A_{6}=1.05 \text { Substitute }
\end{aligned}
$$

$\bigcirc \Leftrightarrow$ And then copy/paste those answers into this Case Theory below

- $A_{1}=0.75$
- $A_{2}=2.6$
- $A_{3}=0.55$
- $A_{4}=0.35$
- $A_{5}=2.16$
- $A_{6}=1.05$

ק Upper Hexagon region
$\square \sum_{n=1}^{3} A_{n}$
$\triangle \sum_{n=1}^{3} A_{n}=A_{3}+A_{2}+A_{1} \quad$ Expand
$\triangle \sum_{n=1}^{3} A_{n}=3.9 \quad$ Calculate
ק Lower Hexagon region
$\square_{n} \sum_{n=4}^{6} A_{n}$
$\triangle_{n=4} \sum_{n}^{6} A_{n}=A_{6}+A_{5}+A_{4} \quad$ Expand $\triangle \sum_{n=4}^{6} A_{n}=3.56 \quad$ Calculate
\geqslant Full Hexagon
$\square \sum_{n=1}^{6} A_{n}$
$\triangle \sum_{n=1}^{6} A_{n}=A_{6}+A_{5}+A_{4}+A_{3}+A_{2}+A_{1} \quad$ Expand
$\triangle \sum_{n=1}^{6} A_{n}=7.46 \quad$ Calculate
Now, we will use the Monte Carlo Method to try to see if we get near this answer using the Probabilistic method for computing area. First we will deal with the upper part of the hexagon, and we need to get a function $f(x)$ made up of linear segments as the "top hat" of this hexagon. Finding the linear equations involved is easy using the Point-Slope form of a line:

Plow = - 2

- high $=2$

๑V = ([-2, 0], [-1, 1.5],[1, 1.1],[2, 0],[1.3, - 1],[-0.5, - 1.4],[-2, 0])
$\geqslant 1$ st line segment

- $f_{1}(\mathbb{X})=\frac{1.5-0}{-1-(-2)}(\mathbb{X}-[-1])+1.5 \geqslant \operatorname{Red}$

百
ק Getting the other line equations in the same way is easy, too:
\bigcirc
(-) xlow $=-2$

- $\mathrm{xhigh}=2$

๑ $V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$
\% 1 st line segment
($f_{1}(8)=\frac{1.5-0}{-1-(-2)}(8-[-1])+1.5 \geqslant \operatorname{Red}$
© 2nd line segment
$\bigcirc f_{2}(x)=\frac{1.1-1.5}{1-(-1)}(x-1)+1.1 \geqslant$ Purple
\geqslant 3rd line segment

- $f_{3}(x)=\frac{0-1.1}{2-1}(x-2)+0 \geqslant$ Green

百
\geqslant Then put these 3 linear equations into a piecewise-defined function to "glue them together"
$\bigcirc \geqslant$
(-) xlow $=-2$

- $\mathrm{xhigh}=2$
- $V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$
© 1 st line segment
$\odot f_{1}(x)=\frac{1.5-0}{-1-(-2)}(x-[-1])+1.5 \geqslant \operatorname{Red}$
\geqslant 2nd line segment
- $f_{2}(z x)=\frac{1.1-1.5}{1-(-1)}(x-1)+1.1 \geqslant$ Purple
\% 3rd line segment
$\bigcirc f_{3}(x)=\frac{0-1.1}{2-1}(x-2)+0 \geqslant$ Green
\geqslant Piecewise-Defined Glued function
$\odot f(\mathbb{x})=\left\{\begin{array}{lc}f_{1}(8) & (-2<8)(8<-1) \\ f_{2}(x) & (-1<8)(x<1) \\ f_{3}(8) & (1<8)(8<2)\end{array}\right.$

百
\geqslant With original line segment functions removed

百
© Now that we have a "top hat" function, we can proceed with the Monte Carlo Method estimation for the area of this region. First step, put a big box around the entire upper hexagon region.
$\bigcirc \geqslant$

- xlow $=-2$ xhigh $=2$
- ylow $=0$ yhigh $=2$

๑ $V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$
$\geqslant 1$ st line segment
$\bigcirc f_{1}(x)=\frac{1.5-0}{-1-(-2)}(x-[-1])+1.5 \geqslant \operatorname{Red}$
\geqslant 2nd line segment

- $f_{2}(x)=\frac{1.1-1.5}{1-(-1)}(x-1)+1.1 \geqslant$ Purple
\% 3rd line segment
- $f_{3}(x)=\frac{0-1.1}{2-1}(z-2)+0 \geqslant$ Green
\geqslant Piecewise-Defined Glued function
$\bullet f(x)= \begin{cases}f_{1}(x) & (-2<z)(x<-1) \\ f_{2}(x) & (-1<z)(x<1) \\ f_{3}(x) & (1<z)(x<2)\end{cases}$

* Generate 2000 uniformly distributed random points inside the bo
$\bigcirc \geqslant$
- xlow $=-2$ xhigh $=2$
- ylow $=0$ yhigh = 2
© $V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$
\% 1 st line segment
$\odot f_{1}(x)=\frac{1.5-0}{-1-(-2)}(x-[-1])+1.5 \geqslant \operatorname{Red}$
\geqslant 2nd line segment
© $f_{2}(z)=\frac{1.1-1.5}{1-(-1)}(z-1)+1.1 \geqslant$ Purple
\geqslant 3rd line segment
- $f_{3}(\mathbb{Z})=\frac{0-1.1}{2-1}(\mathbb{z}-2)+0 \geqslant$ Green

Piecewise-Defined Glued function
$0 f(x)=\left\{\begin{array}{lc}f_{1}(x) & (-2<x)(x<-1) \\ f_{2}(x) & (-1<x)(x<1) \\ f_{3}(x) & (1<x)(x<2)\end{array}\right.$
$\square x=$ Random (xlow, xhigh)

$\square y=$ Random (ylow, yhigh)

\% The Monte carlo idea:
Because the points are approximately uniformly distributed, you Area enclosed by curve Number of random points inside curv
Area enclosed by the box $\approx \frac{\text { Total number of random points inside } 1}{\text { A }}$ so that:
Area enclosed by curve \approx $\left(\frac{\text { Number of random points inside curve }}{\text { Total number of random points inside box }}\right)$ * Area enc

Try it out:
\bigcirc

- xlow $=-2$ xhigh $=2$
- ylow $=0$ yhigh = 2
$\bullet V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$
* 1 st line segment
$\bigcirc f_{1}(x)=\frac{1.5-0}{-1-(-2)}(x-[-1])+1.5 \geqslant \operatorname{Red}$
\geqslant 2nd line segment
$\bullet f_{2}(x)=\frac{1.1-1.5}{1-(-1)}(x-1)+1.1 \geqslant$ Purple
\geqslant 3rd line segment
$\odot f_{3}(x)=\frac{0-1.1}{2-1}(z-2)+0 \geqslant$ Green
\geqslant Piecewise-Defined Glued function
$\sigma f(x)= \begin{cases}f_{1}(x) & (-2<x)(x<-1) \\ f_{2}(x) & (-1<x)(x<1)\end{cases}$
$\begin{array}{ll}f_{3}(\&) & (1<\&)(\&<2)\end{array}$
$\square x=$ Random (xlow, xhigh)

$\square y=$ Random (ylow, yhigh)

\square BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
\triangle BoxArea $=8$ Calculate
\square Count $=\sum_{k=1}^{2000}(y \operatorname{RanNums}[k] \leq f[\operatorname{xRanNums}\{k\}])$
\triangle Count $=968$ Calculate
\square AreaEstimate $=\frac{\text { Count }}{2000}$ BoxArea
\triangle AreaEstimate $=\frac{484}{125} \quad$ Substitute
\triangle AreaEstimate $=3.872$ Calculate

* That is very good! The area of this upper region of the hexagon was measured previously at 3.9.
\geqslant Now, average to try to get a better estimate:
$\bigcirc \geqslant$
- xlow $=-2$ xhigh $=2$
- ylow $=0$ yhigh $=2$
© $V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$
\geqslant 1st line segment
$\odot f_{1}(x)=\frac{1.5-0}{-1-(-2)}(x-[-1])+1.5 \geqslant \operatorname{Red}$
\geqslant 2nd line segment
- $f_{2}(x)=\frac{1.1-1.5}{1-(-1)}(x-1)+1.1 \geqslant$ Purple
\geqslant 3rd line segment
- $f_{3}(z)=\frac{0-1.1}{2-1}(z-2)+0 \geqslant$ Green
\geqslant Piecewise-Defined Glued function
(-) $f(x)=\{$

$$
(-2<x)(x<-1)
$$

$$
f_{2}(x) \quad(-1<x)(x<1)
$$

$$
f_{3}(x) \quad(1<x)(x<2)
$$

LiveMath Note: Making 20 Tabulates can get pretty tiring. So here in this example we do the same computations, but with some functional magic. Everytime these functions get Calculated for each input k, the output is a random number. Notice no k on the right-hand -side, because the random number is not dependent upon the k value.

- xRandoms $(k)=$ Random (xlow, xhigh)
- yRandoms $(k)=$ Random (ylow, yhigh)
\square xRandoms (3)
$\triangle x$ Randoms $(3)=1.21859053899243$ Calculate
© fCounts $(\Omega)=\sum_{k=1}^{2000}(y \operatorname{Randoms}[k] \leq f[\operatorname{xRandoms}\{k\}])$

\square fCounts (1)

\triangle fCounts $(1)=969 \quad$ Calculate
\square fCounts (2)
\triangle fCounts (2) $=962 \quad$ Calculate

- BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
- AreaEst $(\Omega)=\frac{\text { fCounts }(\Omega)}{2000}$ BoxArea

\square AreaEst (1)

\triangle AreaEst (1) $=4.064 \quad$ Calculate
\square AreaEst (2)
AreaEst (2) $=3.808$ Calculate
\square AreaEst (3)
AreaEst (3) $=3.828$ Calculate
\square AreaEst (4)
\triangle AreaEst (4) $=3.944 \quad$ Calculate
\square AreaEst (5)
\triangle AreaEst (5) $=3.852 \quad$ Calculate
\square AreaEst (6)
\triangle AreaEst (6) $=3.8 \quad$ Calculate
\square AreaEst (7)
\triangle AreaEst (7) $=3.932 \quad$ Calculate
\square AreaEst (8)
AreaEst (8) = $3.864 \quad$ Calculate
\square AreaEst (9)
\triangle AreaEst (9) $=3.828 \quad$ Calculate
\square AreaEst (10)
\triangle AreaEst (10) $=3.856$ Calculate
\geqslant The average of the 10 Monte Carlo estimates is:
\square Average $=\frac{\sum_{k=1}^{10} \operatorname{AreaEst}(k)}{10}$
\triangle Average $=3.924$ Calculate
\% That is even better! The area of this
upper region of the hexagon was
measured previously at 3.9.
ק We can perform the analogous
computations for the lower half of the hexagon:
$\bigcirc \geqslant$

- xlow $=-2$ xhigh = 2
) Note: the ylow and yhigh change since we are doing the lower part of the hexagon
ylow $=-2$ yhigh $=0$
© $V=([-2,0],[-1,1.5],[1,1.1],[2,0],[1.3,-1],[-0.5,-1.4],[-2,0])$
\geqslant 4th line segment
- $f_{4}(x)=\frac{-1-0}{1.3-2}(x-1.3)-1 \geqslant$ Red
\geqslant 5th line segment
$\bigcirc f_{5}(8)=\frac{-1.4-(-1)}{-0.5-1.3}(88-[-0.5])-1.4 \geqslant$ Purple
\geqslant 6th line segment
$\odot f_{6}(\mathbb{x})=\frac{0-(-1.4)}{-2-(-0.5)}(\mathbb{z}-[-2])+0 \geqslant$ Green
© Piecewise-Defined Glued function

\geqslant With original line segment functions removed

\square
\% LiveMath Note: Making 20 Tabulates can get pretty tiring. So here in this example we do the same computations, but with some functional magic. Everytime these functions get Calculated for each input k, the output is a random number. Notice no k on the right-hand -side, because the random number is not dependent upon the k value.
© xRandoms $(\mathbb{k})=$ Random (xlow, xhigh)
- yRandoms $(\mathbb{K})=$ Random (ylow, yhigh)

Note: this sum set up below changes because we are below the x-axis now.

- fCounts $(\Omega)=\sum_{k=1}^{2000}(f[x \operatorname{Randoms}\{k\rangle] \leq y R a n d o m s[k])$
- BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
- AreaEst $(\Omega)=\frac{\text { fCounts }(\Omega)}{2000}$ BoxArea

\square AreaEst (1)

AreaEst (1) $=3.404$ Calculate
\square AreaEst (2)
AreaEst (2) $=3.54 \quad$ Calculate
\square AreaEst (3)
\triangle AreaEst (3) $=3.488 \quad$ Calculate
\square AreaEst (4)
\triangle AreaEst (4) $=3.7 \quad$ Calculate
\square AreaEst (5)
AreaEst (5) $=3.584 \quad$ Calculate
\square AreaEst (6)
\triangle AreaEst (6) $=3.512 \quad$ Calculate
\square AreaEst (7)
\triangle AreaEst (7) $=3.572 \quad$ Calculate
\square AreaEst (8)
\triangle AreaEst (8) $=3.556 \quad$ Calculate
\square AreaEst (9)
\triangle AreaEst (9) $=3.544 \quad$ Calculate
\square AreaEst (10)
\triangle AreaEst (10) $=3.38 \quad$ Calculate
\geqslant The average of the 10 Monte Carlo estimates is:
$\sum_{k=1}^{10} \operatorname{AreaEst}(k)$
\square Average $=\frac{\sum_{k=1}}{10}$
\triangle Average $=3.5508 \quad$ Calculate
That is very nice! The area of this lower region of the hexagon was measured previously at 3.56. that the average was not all that bad.

\% T.1.c)

Monte Carlo estimation of another area measurement
\geqslant Here's a very strange geometric region indeed:

- xhigh $=22$
$O f(x)=\left\{\begin{array}{cc}\sqrt{9-x^{2}}+2 & (-3 \leq x)(x<3) \\ 2 & (3 \leq x)(x<5) \\ 3(x-5)+2 & (5 \leq x)(x<8) \\ 0.5(x-8)+11 & (8 \leq x)(x<10) \\ (-2)(x-10)+12 & (10 \leq x)(x<14) \\ \sqrt{16-(x-18)^{2}}+4 & (14 \leq x)(x \leq 22)\end{array}\right.$

We could break up this geometrical object into circles, rectangles, triangles, trapezoids, and compute the area of each subobject, and then add'em up to get the area.
Instead, let's use uniformly distributed points to estimate the meas of the area enclosed by the curve.

\% Answer

Put a box around the big geometric object:

- xlow $=-3$ xhigh $=22$
- ylow $=0$ yhigh $=15$

Generate 2500 uniformly distributed random points inside the bo
$\bigcirc \geqslant$

- xlow $=-3$ xhigh $=22$
(- ylow $=0$ yhigh $=15$
$-f(x)=\left\{\begin{array}{cc}\sqrt{9-z^{2}}+2 & (-3 \leq 8)(z<3) \\ 2 & (3 \leq 8)(z<5) \\ 3(x-5)+2 & (5 \leq 8)(z<8) \\ 0.5(x-8)+11 & (8 \leq 8)(z<10) \\ (-2)(x-10)+12 & (10 \leq 8)(z<14) \\ \sqrt{16-(z-18)^{2}}+4 & (14 \leq 8)(z \leq 22)\end{array}\right.$
* LiveMath Note: Using the functional approach to generating random numbers as demonstrated in the previous example
© xRandoms $(\mathbb{k})=$ Random (xlow, xhigh $)$
© yRandoms (k) = Random (ylow, yhigh)

百
\% The Monte carlo idea:
Because the points are approximately uniformly distributed, you 1 $\frac{\text { Area enclosed by curve }}{\text { Area enclosed by the box }} \approx \frac{\text { Number of random points inside curv }}{\text { Total number of random points inside } \mid}$ so that:
Area enclosed by curve \approx
$\left(\frac{\text { Number of random points inside curve }}{\text { Total number of random points inside box }}\right)$ * Area enc

Try it out

\bigcirc

- xlow $=-3$ xhigh $=22$
- ylow $=0$ yhigh $=15$
$-f(x)=\left\{\begin{array}{cc}\sqrt{9-x^{2}}+2 & (-3 \leq z)(x<3) \\ 2 & (3 \leq x)(x<5) \\ 3(x-5)+2 & (5 \leq x)(x<8) \\ 0.5(x-8)+11 & (8 \leq x)(x<10) \\ (-2)(x-10)+12 & (10 \leq x)(x<14) \\ \sqrt{16-(x-18)^{2}}+4 & (14 \leq x)(x \leq 22)\end{array}\right.$
) LiveMath Note: Using the functional approach to generating random numbers as demonstrated in the previous example
© xRandoms $(\mathbb{k})=$ Random (xlow, xhigh $)$
- yRandoms $(\mathbb{K})=$ Random (ylow, yhigh $)$
© fCounts $(\Omega)=\sum_{k=1}^{2500}(y \operatorname{Randoms}[k] \leq f[x \operatorname{Randoms}\{k\}])$
© BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
- AreaEst $(\Omega)=\frac{\text { fCounts }(\Omega)}{2500}$ BoxArea
\square AreaEst (1)
AreaEst $(1)=162.9 \quad$ Calculate

品
Now, average to try to get a better estimate:
$\bigcirc \geqslant$

- xlow $=-3$ xhigh $=22$
(- ylow $=0$ yhigh $=15$
$-f(x)=\left\{\begin{array}{cc}\sqrt{9-x^{2}}+2 & (-3 \leq z)(x<3) \\ 2 & (3 \leq x)(x<5) \\ 3(x-5)+2 & (5 \leq z)(x<8) \\ 0.5(x-8)+11 & (8 \leq z)(x<10) \\ (-2)(x-10)+12 & (10 \leq x)(x<14) \\ \sqrt{16-(z-18)^{2}}+4 & (14 \leq z)(z \leq 22)\end{array}\right.$
) LiveMath Note: Using the functional approach to generating random numbers as demonstrated in the previous example
© xRandoms $(\mathbb{K})=$ Random (xlow, xhigh $)$
© yRandoms $(k)=$ Random (ylow, yhigh)
- fCounts $(\Omega)=\sum_{k=1}^{2500}(y \operatorname{Randoms}[k] \leq f[\operatorname{xRandoms}\{k\}])$
- BoxArea $=($ xhigh - xlow $)($ yhigh - ylow $)$
- AreaEst $(\Omega)=\frac{\text { fCounts }(\Omega)}{2500}$ BoxArea
\geqslant The average of the 10 Monte Carlo estimates is:
\square Average $=\frac{\sum_{k=1}^{10} \operatorname{AreaEst}(k)}{10}$
\triangle Average $=160.71 \quad$ Calculate

百

- Well, now the no fun part: we should
really check the areas of these geometric regions to make sure this magic really works.
\bigcirc
(-) xlow $=-3$
(0) xhigh $=22$

\% First $1 / 2$ circle over $[-3,3]$
- $A_{1}=\frac{1}{2} \pi \cdot 3^{2}$

ק Rectangle underneath 1 st half circle over [-3, 3]

- $A_{2}=6.2$
© Next rectange over [3,5]
- $A_{3}=(5-3) \cdot 2$
\% Next triangle over [5,8]
- $A_{4}=\frac{1}{2}(8-5)(11-2)$
\geqslant Next rectange under triangle over [5,8]
- $A_{5}=3.2$
\% Next trapezoid over $[8,10]$
- $A_{6}=(10-8) \frac{11+12}{2}$
© Next triangle over [10,14]
- $A_{7}=\frac{1}{2}(14-10)(12-4)$
\geqslant Next rectange under triangle over [10,14]
- $A_{8}=(14-10) \cdot 4$
© Last $1 / 2$ circle over $[14,22]$
- $A_{9}=\frac{1}{2} \pi \cdot 4^{2}$

ק Rectangle underneath 1 st half circle over [14, 22]

$$
\text { - } A_{10}=(22-14) \cdot 4
$$

* Sum all of these up

$$
\square A=\sum_{k=1}^{10} A_{k}
$$

$$
\Delta A=A_{10}+A_{9}+A_{8}+A_{7}+A_{6}+A_{5}+A_{4}+A_{3}+A_{2}+A_{1}
$$

$$
\triangle A=161.769908169872 \quad \text { Calculate }
$$

ק Because of the Law of Large Numbers, the smart money bets that the average was not all that bad: 161.76 vs. 161.805

This electonic material is © 2010 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.
For more information, visit www.livemath.com

