

Introduction to Statistics

Authors : Bruce Carpenter, Bill Davis, Michael Raschke and Jerry Uhl
Publisher: Math Everywhere, Inc. Distributor \& Translator: MathMonkeys, LLC

Adapted from Prob/Stat by : Robert Curtis.

STAT. 02 Data Analysis

Basics B1

Experience with the starred problems will be useful for understanding developme

$\%$ Graphics Primitives

\rightarrow The variables (x, s, t, z, y) are independent of each other $\boldsymbol{\nabla}$.
B. 1) Data analysis: Frequency plots
B.1.a.i) Frequency plots for data sets

Here's a simple data set X :
O
$\square X=(2,3,3,4,4,5,5,5,5,6)$
Here's what lots of folks call the frequency plot of X :
O

- $X=(2,3,3,4,4,5,5,5,5,6)$
- $N=\operatorname{ColsOf}(X)$
$\bigcirc \operatorname{Freq}(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{cc}1 & {\left[\begin{array}{l}X_{k}=\Omega \\ 0\end{array}\right.} \\ \operatorname{ColsOf}(X)\end{array}\right]\right)}{\operatorname{Col})}$

$2 \ldots 6=$ left...right Stretch to Fit ∇
$0 . .0 .5$ = bottom...top cropping Moderately $\boldsymbol{\nabla}$
© Graph Building Blocks
Scatter plot of (n, Freq $[n]$) where $n=2 \ldots 6$ using 10 point spots $\mathbf{\nabla}$ colored Yellow $\boldsymbol{\nabla}$.
Scatter plot of ($n, 0$) where $n=2 \ldots 6$ using 10 point spots $\boldsymbol{\text { B }}$ colored Red $\boldsymbol{\nabla}$.
\checkmark Vector field filled normally $\boldsymbol{\nabla}$ from (Nint[$n], 0$) size True Size $\boldsymbol{\text { Tointing towards }}$
(0, Freq $[\operatorname{Nint}\{n\}]$) where $n=2 \ldots 6$ with One variable-length arm $\boldsymbol{\nabla}$ and no arrowhead $\boldsymbol{\nabla}$ colored Black $\boldsymbol{\nabla}$.

What information about the data set X do you get from this plot?
\% Answer
\geqslant Take another look:
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
- $N=\operatorname{ColsOf}(X)$

$2 \ldots 6$ = left...right \quad Stretch to Fit $\boldsymbol{\nabla}$
$0 \ldots 0.5$ = bottom...top cropping Moderately

Graph Building Blocks

Scatter plot of (n, Freq $[n]$) where $n=2 \ldots 6$ using 10 point spots $\boldsymbol{\nabla}$ colored Yellow $\boldsymbol{\nabla}$.
Scatter plot of $(n, 0)$ where $n=2 \ldots 6$ using 10 point spots $\boldsymbol{\nabla}$ colored Red $\boldsymbol{\nabla}$.
\checkmark Vector field filled normally ∇ from (NInt[n],0) size True Size ∇ pointing towards
(0, Freq $[\operatorname{Nint}\{n\}]$) where $n=2 \ldots 6$ with One variable-length arm ∇ and no arrowhead ∇ colored Black $\boldsymbol{\nabla}$.

The members of the data set are plotted on the horizontal axis. The lengths of the spikes indicate the relative frequency of each You can see that there are more 5's in the data set than any oth There are more 3 's and there are more 4 's than there are 2 's or

When you reach into this dataset and pull out a point at random, you are more likely to get a 5 than any other point in the data se When you read the plot carefully, you can see that you can expec 40% of your random selections to turn out to be 5's. In other words, the probability that you get a 5 is 0.4 .
O Try it by pulling out 200 independent random selections from the © LiveMath Note: Why N+0.999?
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
\square Xpulls $=200$
- $N=\operatorname{ColsOf}(X)$
$\square X_{\operatorname{Int}(R a n d o m[1, N+0.999999])}$
Tabulate Xexperiment with
\geqslant Check the proportion of 5 's in this experiment:
$\bigcirc \geqslant$
- $X=(2,3,3,4,4,5,5,5,5,6)$
\square Xpulls = 200
$\square N=\operatorname{ColsOf}(X)$
- $N=10$ Substitute
$\square X{ }^{\operatorname{Int}(R a n d o m[1, N+0.999999])}$

"

$\square \frac{\sum_{k=1}^{200}(\text { Xexperiment }[k]=5)}{200}$
$\triangle \frac{\sum_{k=1}^{200}(\text { Xexperiment }[k]=5)}{200}=\frac{81}{200} \quad$ Calculate
$\triangle \frac{\sum_{k=1}^{200}(\text { Xexperiment }[k]=5)}{200}=0.405 \quad$ Calculate

Rerun this experiment a few times.
Unless something really weird happens, you should usually get a k That's what probability theory is all about.
Now run a huge experiment pulling out 1000 random selections f
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
\square Xpulls $=1000$
$\square N=\operatorname{ColsOf}(X)$
- $N=10$ Substitute
$\square X^{\prime}{ }^{\operatorname{nnt}(R a n d o m[1, N+0.999999])}$
 : $:$ Tabulate Xexperiment ${ }_{2}$ with

$\square \frac{\sum_{k=1}^{1000}\left(\text { Xexperiment }{ }_{1}[k]=5\right)}{1000}$
$\triangle \frac{\sum_{k=1}^{1000}\left(\text { Xexperiment }{ }_{1}[k]=5\right)}{1000}=\frac{420}{1000} \quad$ Calculate
$\sum_{k=1}^{1000}\left(\right.$ Xexperiment $\left.{ }_{1}[k]=5\right)$
$\triangle \frac{k=1}{1000}=0.42$ Calculate
$\square \frac{\sum_{k=1}^{1000}\left(\text { Xexperiment }{ }_{2}[k]=5\right)}{1000}$
$\Delta \frac{\sum_{k=1}^{1000}\left(\text { Xexperiment }{ }_{2}[k]=5\right)}{1000}=\frac{394}{1000}$

$$
\Delta \frac{\sum_{k=1}^{1000}\left(\text { Xexperiment }_{2}[k]=5\right)}{1000}=0.394 \quad \text { Calculate }
$$

1000
$\sum_{k=1}^{100}\left(\right.$ Xexperiment $\left.{ }_{3}[k]=5\right)$
1000

$$
\triangle \frac{\sum_{k=1}^{1000}\left(\text { Xexperiment }_{3}[k]=5\right)}{1000}=\frac{386}{1000}
$$

$$
\triangle \frac{\sum_{k=1}^{1000}\left(\text { Xexperiment }{ }_{3}[k]=5\right)}{1000}=0.386
$$

The bigger experiment is more likely to result in a good approxim Let's try a super huge pull of 5000 samples:
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
(- Xpulls $=5000$
$\square N=\operatorname{ColsOf}(X)$
- $N=10$
$\square^{X} \operatorname{Int}(\operatorname{Random}[1, N+0.999999])$

Xpulls
$\square \frac{\sum_{k=1}\left(\text { Xexperiment }{ }_{1}[k]=5\right)}{\text { Xpulls }}$

$$
\Delta \frac{\sum_{k=1}^{\text {Xpulls }}\left(\text { Xexperiment }{ }_{1}[k]=5\right)}{\text { Xpulls }}=\frac{1990}{\text { Xpulls }}
$$

Xpulls

$$
\Delta \frac{\sum_{k=1}\left(\text { Xexperiment }_{1}[k]=5\right)}{\text { Xpulls }}=0.398 \quad \text { Calculate }
$$

Xpulls

$$
\frac{\sum_{k=1}\left(\text { Xexperiment }{ }_{2}[k]=5\right)}{\text { Xpulls }}
$$

$$
\Delta \frac{\sum_{k=1}^{\text {Xpulls }}\left(\text { Xexperiment }{ }_{2}[k]=5\right)}{\text { Xpulls }}=\frac{1995}{\text { Xpulls }} \quad \text { Calculate }
$$

Xpulls

$$
\sum_{k=1}^{\text {Xpulls }}\left(\text { Xexperiment }{ }_{2}[k]=5\right)
$$

Xpulls

Calculate

$$
\square \frac{\sum_{k=1}^{\text {Xpulls }}\left(\text { Xexperiment }{ }_{3}[k]=5\right)}{\text { Xpulls }}
$$

$$
\begin{aligned}
& \Delta \frac{\sum_{k=1}^{\text {Xpulls }}\left(\text { Xexperiment }_{3}[k]=5\right)}{\text { Xpulls }}=\frac{1985}{\text { Xpulls }} \quad \text { Calculate } \\
& \Delta \frac{\sum_{k=1}^{\text {Xpulls }}\left(\text { Xexperiment }_{3}[k]=5\right)}{\text { Xpulls }}=0.397 \quad \text { Calculate }
\end{aligned}
$$

ק The bigger experiment is more likely to result in a good approxim Very very close to the expected probability of 40% chance of pu
B.1.a.ii) Sampling from a data set

Stay with the same dataset X as in part i) above and run this little । involving 50 random selections from the dataset X :

- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls = 50
- $N=\operatorname{ColsOf}(X)$

Xpulls
$\square \frac{\sum_{k=1}\left(\text { Xexperiment }{ }_{1}[k]=5\right)}{\text { Xpulls }}$
Xpulls
$\triangle \frac{\sum_{k=1}\left(\text { Xexperiment }{ }_{1}[k]=5\right)}{\text { Xpulls }}=0.36 \quad$ Calculate
Now, look at this plot:
○ $\mathcal{O}=(2,3,3,4,4,5,5,5,5,6)$

- Xpulls = 50
$\square N=\operatorname{ColsOf}(X)$
$\square X \operatorname{Int}(\operatorname{Random}[1, N+0.999999])$

© $\operatorname{Freq}(\Omega)=\frac{\sum_{k=1}^{\text {Xpulls }}\left(\left\{\begin{array}{l}1 \\ 0\end{array}\right.\right.}{\text { Xpulls } \quad\left[\begin{array}{c}\left.\text { Xexperiment }{ }_{1}\{k\}=\curvearrowleft\right] \\ {[1 \geq 0]}\end{array}\right)}$

What does this plot depict?

© Answer

© Take another look:
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls = 50
$\square N=\operatorname{ColsOf}(X)$
$\square X_{\operatorname{Int}(R a n d o m[1, N+0.999999])}$

© $\operatorname{Freq}(\Omega)=\frac{\sum_{k=1}^{\text {Xpulls }}\left(\left\{\begin{array}{l}1 \\ 0\end{array}\right.\right.}{\text { Xpulls }}$

) The members of the given data set X are plotted on the horizont The lengths of the spikes indicate the percentage of times (relati that each point of X was pulled from the dataset in the experimeı
ק B.1.a.iii) More sampling
Stay with the same dataset X as in part i) above and see the frequs plot resulting from a new experiment involving 50 random selectior
- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls = 50
- $N=\operatorname{ColsOf}(X)$
$\square{ }^{X} \operatorname{Int}(\operatorname{Random}[1, N+0.999999])$

\% The frequency plot for this experiment is:

- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls = 50
$N=\operatorname{ColsOf}(X)$
$\square X_{\operatorname{Int}(R a n d o m[1, N+0.999999])}$
:

$2 \ldots 6=$ left...right Stretch to Fit $\boldsymbol{\nabla}$
$0 . .0 .5$ = bottom...top cropping Moderately
Graph Building Blocks
Scatter plot of $(n$, Freq $[n])$ where $n=2 \ldots 6$
using 10 point spots $\boldsymbol{\nabla}$ colored Orange $\boldsymbol{\nabla}$.
Scatter plot of $(n, 0)$ where $n=2 \ldots 6$ using 10 point spots $\boldsymbol{\nabla}$ colored Red $\boldsymbol{\nabla}$.
\backslash Vector field filled normally ∇ from (NInt [$n], 0$)
size True Size ∇ pointing towards
(0, Freq [NInt $\{n\}]$) where $n=2 \ldots 6$ with
One variable-length arm $\boldsymbol{\nabla}$ and no arrowhead $\boldsymbol{\nabla}$
colored Magenta $\boldsymbol{\nabla}$.
Now, look at this experimental frequency plot together with the id ϵ
- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls = 50
- $N=\operatorname{ColsOf}(X)$
$\square{ }^{X} \operatorname{Int}(\operatorname{Random}[1, N+0.999999])$
\%
\bullet Freq $(\Omega)=\frac{\begin{array}{l}\text { Xpulls } \\ \sum_{k=1}\end{array}\left(\left\{\begin{array}{l}1 \\ 0\end{array}\right.\right.}{\text { Xpulls }}$
$\bigcirc \operatorname{IdeaIFreq}(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{ll}1 & {\left[\begin{array}{l}X_{k}=\Omega \\ 0\end{array}\right.} \\ {[1 \geq 0]}\end{array}\right]\right.}{N}$

Describe what you see and try to explain why you see it.

Answer

${ }^{\beta}$ Take another look:
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls $=50$
- $N=\operatorname{ColsOf}(X)$
$\square X_{\operatorname{Int}(R a n d o m[1, N+0.999999])}$

© Freq $(\Omega)=\frac{\sum_{k=1}^{\text {Xpulls }}\left(\left\{\begin{array}{l}1 \\ 0\end{array}\right] \quad\left[\begin{array}{c}\left.\text { Xexperiment }{ }_{1}\{k\}=\Omega\right] \\ {[1 \geq 0]}\end{array}\right)\right.}{\text { Xpulls }}$
- IdealFreq $(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{lc}1 & {\left[\begin{array}{l}X_{k}=\Omega \\ 0\end{array}\right.} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$

\geqslant That's the difference between theory and practice. The theory tells you what to expect in practice.
Large scale experiments should exhibit nearly the same frequenc! as the original ideal frequency plot.
Try it for a big experiment involving 1000 random pulls from X :
- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls $=1000$
- $N=\operatorname{ColsOf}(X)$
$\square X^{X}{ }_{\operatorname{Int}(R a n d o m[1, N+0.999999])}$

© CompareFreq $(\Omega, \infty)=$
- IdealFreq $(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{ll}1 & {\left[\begin{array}{l}X_{k}=\Omega \\ 0\end{array}\right.} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$
\geqslant Animation showing the 3 experiments together:

Animate this graph for $a=1 \ldots 4$ in steps of 1
for a total of 3 frames in a cycle $\boldsymbol{\nabla}$ at
6 frames/second $\boldsymbol{\nabla}$.
$1.9 \ldots 6.1=$ left...right Stretch to Fit $\boldsymbol{\nabla}$
$0 . .0 .5$ = bottom...top cropping Moderately $\boldsymbol{\nabla}$

© Graph Building Blocks

- Scatter plot of (n, CompareFreq [$n, a]$) where $n=2 \ldots 6$ using 14 point spots $\boldsymbol{\nabla}$ colored Orange $\boldsymbol{\nabla}$.
Scatter plot of $(n, 0)$ where $n=2 \ldots 6$ using 10 point spots $\boldsymbol{\nabla}$ colored Red $\boldsymbol{\nabla}$.
\checkmark Vector field filled normally $\boldsymbol{\nabla}$ from (Nint[$n], 0$) size True Size $\boldsymbol{\nabla}$ pointing towards
(0 , CompareFreq [NInt $\{n\}, a]$) where $n=2 \ldots 6$

Yellow $\boldsymbol{\nabla}$.

\checkmark Vector field filled normally ∇ from (NInt[n],0) size True Size $\boldsymbol{\nabla}$ pointing towards (0, IdealFreq [NInt $\{n\}]$) where $n=2 \ldots 6$ with One variable-length arm $\boldsymbol{\nabla}$ and no arrowhead $\boldsymbol{\nabla}$ colored Dark Gray ∇.

Animation showing continually regenerating experiments

- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls = 1000
\% Change the Xpulls variable above to increase the sampling rate for the animation.
- $N=\operatorname{ColsOf}(X)$
$\square X^{\operatorname{Int}(R a n d o m[1, N+0.999999])}$
© RandomFreq $(\Omega)=\frac{\sum_{k=1}^{\text {Xpulls }}\left(\begin{cases}1 \\ 0\end{cases} \right.}{\left[X_{\operatorname{Int}\{\text { Ranı }}\right.}$
$\bigcirc \operatorname{IdealFreq}(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{cc}1 & {\left[\begin{array}{l}X_{k}=n \\ 0\end{array}\right.} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$

Animate this graph for $a=1 \ldots 11$ in steps of 1 for a total of 10 frames in a cycle $\boldsymbol{\nabla}$ at 6 frames/second $\boldsymbol{\nabla}$.
Rerun many times.
Each time you run it, you see the results of a different large scalt compared to the ideal frequency plot.

For small scale experiments, the results aren't always so good:
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
(- Xpulls = 10
- $N=\operatorname{ColsOf}(X)$
$\square X_{\operatorname{Int}(R a n d o m[1, N+0.999999])}$

Tabulate Xexperiment ${ }_{3}$ with \square ■■ \square

- IdealFreq $(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{lc}1 & {\left[\begin{array}{l}X_{k}=\Omega \\ 0\end{array}\right.} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$
* Animation showing the 3 experiments

together:

Animate this graph for $a=1 \ldots 4$ in steps of 1 for a total of 3 frames in a cycle $\boldsymbol{\nabla}$ at 6 frames/second $\boldsymbol{\nabla}$.
\% For 20 pulls:
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
- Xpulls = 20
- $N=\operatorname{ColsOf}(X)$
${ } X_{\operatorname{Int}(\operatorname{Random}[1, N+0.999999])}$
\bullet IdealFreq $(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{ll}1 & {\left[\begin{array}{l}X_{k}=\Omega \\ 0\end{array}\right.} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$
* Animation showing the 3 experiments together:

Animate this graph for $a=1 \ldots 4$ in steps of 1
for a total of 3 frames in a cycle $\boldsymbol{\nabla}$ at
6 frames/second $\boldsymbol{\nabla}$.
\geqslant For 60 pulls
$\bigcirc \geqslant$
© $X=(2,3,3,4,4,5,5,5,5,6)$

- Xpulls = 60
- $N=\operatorname{ColsOf}(X)$
$\square X_{\operatorname{Int}(R a n d o m[1, N+0.999999]) ~}^{\text {(Rand }}$

 :

Xpulls	
$\sum_{k=1}$	
	1 1
[Xexperir	
[Xexperir	
[Xexperir	

- CompareFreq $(\Omega, \Omega)=$
- IdealFreq $(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{lc}1 & {\left[\begin{array}{l}X_{k}=\Omega \\ 0\end{array}\right.} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$
© Animation showing the 3 experiments together:

Animate this graph for $a=1 \ldots 4$ in steps of 1 for a total of 3 frames in a cycle $\boldsymbol{\nabla}$ at 6 frames/second $\boldsymbol{\nabla}$.

Can you do the same thing for other data sets X ?
\% Answer
© You bettcha!
Go with this sample random data set:
$\bigcirc \geqslant$
$\square \operatorname{lnt}($ Random [1, 12.999999])

\% See it:
$\bigcirc \geqslant$
$\square \operatorname{lnt}($ Random [1, 12.999999])

- $N=70$
- IdeaIFreq $(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{l}1 \\ 0\end{array} \quad N \quad \begin{array}{c}{[\operatorname{XRandomSet}\{k\}=\curvearrowleft]} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$

ק Do some experiments:

$\square \operatorname{lnt}($ Random[1, 12.999999])
\%

- $N=70$
- Xpulls = 50
\square XRandomSet ($\operatorname{Int}[$ Random $\{1,70.9999\}])$
:"

$\bigcirc \geqslant$

$\square \operatorname{Int}($ Random [1, 12.999999])
: ":

- $N=70$
- Xpulls = 1000
\square XRandomSet ($\operatorname{Int}[$ Random $\{1,70.9999\}]$)

\%

- $\left.\operatorname{IdeaIFreq}(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{l}1 \\ 0\end{array}\right.\right.}{\substack{\text { XRandomSet }\{k\}=\Omega] \\[1 \geq 0]}}\right)$

Animation showing continually regenerating experiments
$\bigcirc \geqslant$

- $X=(2,3,3,4,4,5,5,5,5,6)$
$\square \operatorname{Int}($ Random[1, 12.999999])

- Xpulls = 50

Change the Xpulls variable above to
increase the sampling rate for the animation.

- $N=70$
© RandomFreq $(\Omega)=\underbrace{\sum_{=1}^{\text {Xpulls }}(\{ }_{k=1}$
- IdealFreq $(\Omega)=\frac{\sum_{k=1}^{N}\left(\left\{\begin{array}{l}1 \\ 0\end{array} \quad N \quad \begin{array}{c}{[\text { XRandomSet }\{k\}=\Omega]} \\ {[1 \geq 0]}\end{array}\right)\right.}{N}$

Animate this graph for $a=1 \ldots 11$ in steps of 1 for a total of 10 frames in a cycle $\boldsymbol{\square}$ at 6 frames/second $\boldsymbol{\nabla}$.
Think of it:
You are gearing up to unleash TMT (Tomorrow's Math Today) to do data analysis the way few have done in the past.
They could only talk about this. You can do this.

This electonic material is (C) 2007 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.
For more information,
visit www.livemath.com

