STAT.05.B2.the page 1
< [IAUEL Introduction to Statistics

S Authors : Bruce Carpenter, Bill Davis, Michael Raschke and Jerry Uhl

Publisher : Math Everywhere, Inc. Distributor & Translator: MathMonkeys,
LLC

Adapted from Prob/Stat by : Robert Curtis.

S

STAT.05 Normal and Exponential
Basics B2

@ Experience with the starred problems will be useful for understanding developme
@ Graphics Primitives

1., The variables (X, s,t,z, y) are independent of |each other w|.

K B.2) Approximately normally distributed data sets:
The normal (Gaussian) distribution

® B.2.a.i) "Normal Distributions"

R The idea of "normally distributed" data sets is a big buzzword in
mathematical, physical, biological, and social sciences.

What do folks mean when they say that a data set is approximately
normally distributed?

@ Answer:

@ When they say that a data set is
approximately normally distributed, they
mean that the cumulative distribution
function CumDist(x,X) can be described
via some basic algebraic formulas that
are completely determined by the
Expected Value u and the Standard
Deviation o.

STAT.05.B2.the page 2

STAT.05.B2.the page 3

@ Why is this useful? Because if someone
walks up to you on the street with a data
set X and says, "This data set is
approximately normally distributed", the
computing just two numbers of that set
X -- w and o -- will completely determine
the CumDist function, and thus the
computations of probabilities on the set
X

& B.2.a.ii) The Bell Curve Associated to a Data Set X
@ The

normal
law of error
stands out in the
experience of mankind
as one of the broadest
generalizations of natural
philosophy ~ It serves as the
guiding instrument in researches
in the physical and social sciences and
in medicine, agriculture and engineering ~
It is an indispensable tool for the analysis and the
interpretation of the basic data obtained by observation and experiment.

----This bell shaped design is by statistician W. J. Youden
@ Let's look at a nice data set X:

Oe
@ X=0.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,13,¢
& And let's compute the Expected Value u

and Standard Deviation o = +/Variance(X)
O u = ExpectVal(X)
A u =9.3495 Calculate

(Do =4/ Var(X)

N\ o =2.35355045622566 Calculate

& For any data set X, we look at the
associated Bell Curve that is defined by
the following formula using u and o, using
our old friend Euler's number

e=2.71828....

STAT.05.B2.the page 4

I

// | \\

5 X 10 15

& What is the area of that yello region
under the Bell Curve? We can't use
basic geometry to get it, but we can use
the Monte Carlo method!

& Remember the Monte Carlo idea:

Because the points are approximately uniformly distributed, yoi

Area enclosed by curve Number of random points inside ctL
Area enclosed by the box Total number of random points insid
so that:

U

Area enclosed by curve
Number of random points inside curve
Total number of random points inside box

* Area e

Try it out
Oe
@ Prob(X< 8), so let a=8
(e)a=38
(e) xlow =0 (e) xhigh = a

(o) ylow =0 (o) yhigh =0.18 & Choosing yhigh to make sure box
encloses the region we want

-0.0902657464194174

J2m

(® BellCurve () = 0.424889977333939 £

STAT.05.B2.the page 5

@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in

STAT.01.T1
(¢) xRandoms (k) = Random (xlow, xhigh)
(¢) yRandoms (k) = Random(ylow, yhigh)

2500
() fCounts(m)= Y (yRandoms| k|=< BellCurve | xRandoms {k})
k'=1

(») BoxArea = (xhigh - xlow)(yhigh - ylow)
A BoxArea = 80.18 Calculate Calculate
[\ BoxArea = 1.44 Calculate

(¢) AreaEst(m) = fCozusnc')cg()

@ Do a few computations
() AreaEst (1)

/\ AreaEst (1) = m fCounts(1) BoxArea Substitute

= I leul
/\ AreaEst (1) = 2500 .526-1.44 Calculate Calculate

N\ AreaEst (1) = 0.302976 Calculate
() AreaEst (2)
/\ AreaEst (2) = 0.298368 Calculate
() AreaEst (3)
/\ AreaEst (3) = 0.295488 Calculate
& Take 100 averages to get the best
estimate'

O+ 00, E AreaEst (/)

BoxArea

&100 E AreaEst (j)=0.28227456 Calculate

S, Now, remember that Prob(X<8) =
CumbDist (8, X)

(O CumDist (8, X)=0.275

@ Pretty close. Notice that the
computations above did not include the

STAT.05.B2.the page 6

actual data set X - we only used u, o, the
BellCurve (x) formula, and the Monte

STAT.05.B2.the page 7
Carlo method.

15

& Computation #2: Prob(X< 11.5)

@ Since we know the data set X here, and
we have LiveMath, we can compute this
probability using the CumbDist(x,X)
funciton:

Olg

(@ X=0.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,
& Prob(X< 11.5) = CumDist(11.5, X)
() CumDist(11.5, X)
/\ CumDist(11.5, X)=0.800000000000001 Calculate
@ So the probability of a pull from X being < 11.
5 is 80%. Easy peasy.

& But now let's look at something
interesting with the associated Bell curve

graph:
Oe
(@ uw =9.3495
(@) o =2.35355045622566
(x-w)?
25°

(O BellCurve (i) = e,JZ
T O

STAT.05.B2.the page 8
-0.090265746419417

/& BellCurve ()= 0.424889977333939 £ 7
U

@ Prob(X<11.5), solet a=11.5
(@Ja=11.5
() BellCurve(a)
!/ BellCurve (a)= BellCurve (8)
1

/\ BellCurve (a)=0.424889977333939 £ OT6A387AB6555155,
/\ BellCurve (a)=0.14381161856011

4
'y |

D y N

i
S) X 10 15

& What is the area of that yello region
under the Bell Curve? We can't use
basic geometry to get it, but we can use
the Monte Carlo method!
& Remember the Monte Carlo idea:
Because the points are approximately uniformly distributed, yoi

Area enclosed by curve Number of random points inside ctL
Area enclosed by the box Total number of random points insid
so that:

U

Area enclosed by curve

STAT.05.B2.the page 9
Number of random points inside curve

_ — * Area e
Total number of random points inside box

Try it out
Oe
@ Prob(X<11.5), solet a=11.5
@a=11.5
(e) xlow =0 (e) xhigh = a
(o) ylow =0 (o) yhigh =0.18 & Choosing yhigh to make sure box

encloses the region we want
-0.0902657464194174

J2m

(® BellCurve () = 0.424889977333939 £

@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in
STAT.O01.T1

(¢) xRandoms (k) = Random (xlow, xhigh)

(¢) yRandoms (k) = Random(ylow, yhigh)

2500
() fCounts(m)= Y (yRandoms| k|=< BellCurve| xRandoms {k})
k'=1

(») BoxArea = (xhigh - xlow)(yhigh - ylow)
/\ BoxArea =2.07 Calculate
_ fCounts ()

(¢) AreaEst(m) = 5200 BoxArea

@ Do a few computations
() AreaEst (1)

/\ AreaEst (1) =0.818892 Calculate
() AreaEst (2)

/\ AreaEst (2) = 0.818892 Calculate
() AreaEst (3)

/\ AreaEst (3) = 0.827172 Calculate
& Take 100 averages to get the best

estimate:

STAT.05.B2.the

C]100 E

page 10

AreaEst ()

&100 E AreaEst (j)=0.8224938

S Now, remember that Prob(X<11.5) =
CumDist(11.5, X)

() CumbDist(11.5, X)=0.8

@ Pretty close. Notice that the
computations above did not include the
actual data set X - we only used u, o, the
BellCurve (x) formula, and the Monte
Carlo method.

Calculate

AR T A g ;‘ .
8 o ee v SOy ", .v“ s e Ssn et
A ‘

L XU ’

0.15 [t
. o *

July Lighting w

Camelw

surface has

no mesh v

is the solid color.

Red w|.

\n Curve at (t, BellCurve|[t])where t =0... 20 with a
line, colored

Scatter plot of (xRandoms| k], yRandoms| k [) where k =1 ...
using

point |spotsv| colored |BIuev|.

and is shaded using

O R A R Sy
y~'°-°f:"... S B RN AR
0.05 [it s Y
) .,.“:‘:;.:' —
15

0... 20 = left...right Stretch to Fit w

0...0.2 = bottom...top cropping [Moderately w

€ Graph Building Blocks
4 Surface at (x, y) where x = xlow ... xhigh and y =0... BellCurve

Solid e

extra heavy w

250

STAT.05.B2.the page 11
H using 2 point |spotswr| colored [Blue w|.

@ Computation #3: Prob(9.2 < X <12.3)
@ Since we know the data set X here, and
we have LiveMath, we can compute this
probability using the CumbDist(x,X)
funciton:
Oe
(X =0.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,
& Prob(9.2 < X <12.3)
= CumDist(12.3, X) - CumDist(9.2, X)
() CumbDist(12.3, X)- CumbDist (9.2, X)
/\ CumDist(12.3, X)- CumDist (9.2, X)=0.905000000000001
O CumDist (12.3, X)- CumDist (9.2, X) = 0.44 Calculate
& So the probability of a pull from X being > 9.
2 and £ 11.5is 44%. Easy peasy.

& But now let's look at something
interesting with the associated Bell curve

graph:
Oe
(@ uw =9.3495
(@) o =2.35355045622566
_(-w)
e 25°
(O BellCurve (x) = T

-0.090265746419417

/& BellCurve () = 0.424889977333939 £ 7
U

@ Prob(9.2 < X<12.3), so let a=9.2, b=
12.3

(e)a=9.2

@b=123

STAT.05.B2.the

4

page 12

0.15

0.1

0.05

.

/

.

SN—

5 X 10

15

0..20

= left...right
0...0.2 = bottom...top

Stretch to Fit w

cropping

Moderate

ly v

y=0..

S/ Graph Building Blocks

.. b and

. BellCurve (x)

April nghting A\ 4

no mesh v

and is shaded using

Camelw

heavy w

is the solid color.
\n Curve at (x, BellCurve| x [) where x = left ...

line, colored |Red wr|.

Solid w

colored

Blue w|.

colored

t=0..

\n Curve at (b,0)t +(1-t)(b,

t=0..

. 1 with a [heavy w| line,

1 with a

heavy w| line,

coloring;

Scatter plot of (a,0) where ?using 10 point
solid squares w
Scatter plot of (b,0) wher
solid squares w
\n Curve at (a,0)t +(1- t)(a, BellCurve|[a]) where

e 7 using 10 point
Green w|.

surface has

colored

Magenta w|.

BellCurve| b |) where

colored

Purple w|.

right with a

& What is the area of that yello region

under the Bell Curve? We can't use

STAT.05.B2.the page 13

basic geometry to get it, but we can use
the Monte Carlo method!

& Remember the Monte Carlo idea:
Because the points are approximately uniformly distributed, yoi
Area enclosed by curve Number of random points inside ctL

~

Area enclosed by the box Total number of random points insid
so that:
Area enclosed by curve
Number of random points inside curve
Total number of random points inside box

U

* Area e

Try it out
Oe
@ Prob(9.2 < X< 12.3), so let a=9.2, b=

12.3
(@a=9.2
)b =123
(¢) xlow = a (s) xhigh = b
(o) ylow =0 (o) yhigh =0.18 & Choosing yhigh to make sure box

encloses the region we want
-0.0902657464194174

J2m

(® BellCurve () = 0.424889977333939 £

@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in

STAT.01.T1
(¢) xRandoms (k) = Random (xlow, xhigh)
(¢) yRandoms (k) = Random(ylow, yhigh)

2500
() fCounts(m)= Y (yRandoms| k|=< BellCurve| xRandoms {k})
k'=1

(») BoxArea = (xhigh - xlow)(yhigh - ylow)
\ BoxArea = 0.558 Calculate

STAT.05.B2.the page 14

(¢) AreaEst(m) = fCozusnc')cg()

& Do a few computations
() AreaEst (1)

/\ AreaEst (1) =0.4178304 Calculate
() AreaEst (2)

/\ AreaEst (2) = 0.4167144 Calculate
() AreaEst (3)

/\ AreaEst (3) = 0.4303296 Calculate
& Take 100 averages to get the best

estimate'

O+ 00, E AreaEst ()

BoxArea

&100 E AreaEst (j) = 0.421544448 Calculate

S Now, remember that
Prob(9.2 < X < 12.3)

= CumDist(12.3, X) - CumDist(9.2, X)
(O CumbDist (12.3, X)- CumDist (9.2, X) = 0.44
@ Pretty close. Notice that the
computations above did not include the
actual data set X - we only used u, o, the
BellCurve (x) formula, and the Monte
Carlo method.

0.15

0.1

0.05

15

STAT.05.B2.the page 15

0... 20 = left...right Stretch to Fit w
0...0.2 = bottom...top cropping [Moderately w

& Graph Building Blocks

July Lighting wr| surface has [no mesh w| and is shaded using [Solid w

Camel w| is the solid color.
\n Curve at (t, BellCurve[t])where t =0... 20 with a [extra heavy w
line, colored |Red wr|.

Scatter plot of (xRandoms| k |, yRandoms| k [) where k =1 ...250
using 2 point |spotswr| colored [Blue w|.

@ Computation #4: Area of BellCurve vs.
CumbDist(x,X)

& We will now set up a Case Theory that
graphs the CumbDist(x,X) function, along
with a number of Area computations
from the Bell Curve.

Ol@ Area under Bell Curve vs. CumDist (x,X)=Prob(x<X)

(9 X =(8.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,
(O u = ExpectVal(X)

mu =9.3495 Calculate
o =4 Var(X)

N\ o =45.53919975 Calculate

/oy o =2.35355045622566 Calculate
_(x-u)
202

J2n o

(O BellCurve (x) = €

-0.090265746419417

/& BellCurve ()= 0.424889977333939 £ 7
U

& N = Number of Area values to compute.

STAT.05.B2.the page 16

Depending upon your patience level, you may
increase the number chop-up points, as well as
increase the number of random samples and
number of averages taken.

&N=8

& K = Which Area Region to show
@K=3

@ The Monte Carlo Computations
(o) xlow =0
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%,) = Random xlow, x)
(¢) yRandoms (k) = Random ylow, yhigh)

1000
) (yRandoms[k] < BellCurve [xRandoms { k

(¢) fCounts (1, x
(¢) fBoxArea ()
(¢) AreaEst (7, x)

(x onw)(yhigh - ylow)

fCounts(m, x)
7000 fBoxArea ()

20
(9) AreaAvg (1, %)= 55 > AreaEst(n, x)
j=1

@ Black squares height = Area under Bell
Curve at Blue Spots

STAT.05.B2.the

page 17
v
1 .
| -
0.8
0.6
15

& The accumulating areas under the Bell
Curve match up perfectly with the
CumbDist(x,X) function.

@ This means: You can compute
probabilities of the data set X by

STAT.05.B2.the page 18

examining the AREA under the associated
Bell curve.

STAT.05.B2.the page 19

& B.2.b.i) Does this Bell curve Area -> CumDist(x,X) work for all
data sets X?

@ Does this Area under the Bell curve will
compute the Prob(x<X) = CumbDist(x,X)
trickery work for all data sets X?

® Answer:
2 Nope.

& The data sets that this does work for are
called approximately normally distributed.

& B.2.b.ii) Checking to see if a data set X is appoximately normally di:
R How do you tell whether a given data set X is approximately norma
K Answer:

@ Just look at your data set in the Monte Carlo computation
Case Theory above, and compare if the areas under the Bell
curve match up with the CumDist(x,X) function.

Ol@ Area under Bell Curve vs. CumDist (x,X)=Prob(x<X)

@) X =(12.8193,6.24358,0.392916,5.74745,18.8538,4.97144,
O uw = ExpectVal(X)
@ u =1.47577232 Calculate
Do =4 Var(X)
o =8.23018899672781 Calculate
_(x-u)
202

(O BellCurve (x) = e,JZ
T O

-0.0073815979594192;

J2m

4 BellCurve ()= 0.121503892607762 £

& N = Number of Area values to compute.

Depending upon your patience level, you may
increase the number chop-up points, as well as
increase the number of random samples and
number of averages taken.

STAT.05.B2.the page 20
&N=8

& K = Which Area Region to show
@OK=3

@ The Monte Carlo Computations
(e) xlow = -20
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%,) = Random(xlow,)
(¢) yRandoms (k) = Random(ylow, yhigh)

1000
> (yRandoms| k| = BellCurve| xRandoms {k, .

(¢) fCounts (7, x)

(¢) fBoxArea () = (s - xlow) yhigh - ylow)

(¢) AreaEst (7, x) fCou&’)cg%@, “) fBoxArea (%)

20
(9) AreaAvg (1, %)= 55 > AreaEst(n, x)
j=1

@ Black squares height = Area under Bell
Curve at Blue Spots

STAT.05.B2.the

4

page 21

0.8

0.6

0.4

—0.2

"W Dwnx"nl

T e

e M"J{‘

& Not much doubt about it.

The Area squares match up near perfectly to the
CumbDist(x,X) cumulative distribution function of X.
The Call:

STAT.05.B2.the page 22
The given data set X is approximately normally distributed.

< Try it again with this new data set:
Ol@ Area under Bell Curve vs. CumDist(x,X)=Prob(x<X)

@ X =(1.5,0.38,4.2,0.71,6.1,1.4,2.2,0.046,0.31,0.68,0.91,5.3,
O u = ExpectVal(X)
o u =1.42471607142857 Calculate
Qo =4 Var(X)
& o =1.49910960302593 Calculate
(-wp
e 267

J2n o

(O BellCurve (x) =

-0.22248627863964(x -

4 BellCurve () = 0.667062633700374 < 7
TT

& N = Number of Area values to compute.

Depending upon your patience level, you may
increase the number chop-up points, as well as
increase the number of random samples and
number of averages taken.

&N=8
& K = Which Area Region to show
@K=3

@ The Monte Carlo Computations
() xlow = min(X)
/& xlow =0.0012 Calculate
() xhigh = max(X)
/& xhigh =9.9 Calculate
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%,) = Random(xlow,)
(¢) yRandoms (k) = Random(ylow, yhigh)

1000
> (yRandoms| k| = BellCurve| xRandoms {k, .

(¢) fCounts (7, x)

(¢) fBoxArea () = (s - xlow) yhigh - ylow)

STAT.05.B2.the page 23

(o) AreaEst(m,)=

fCounts (), 5)

(o) AreaAvg (7, x) =

T000 fBoxArea ()

20
1
20, z 1 AreaEst (7, x)

@ Black squares height = Area under Bell
Curve at Blue Spots

4

0.8 IJJ

0.6 |

STAT.05.B2.the page 24

&)

Not much doubt about it.

The Area squares do not match up to the

CumbDist(x,X) cumulative distribution function of X.

The Call:

The given data set X is NOT approximately normally distributed.

& B.2.c) The main advantage you get when you have an approximatel
normally distributed data set
& When you know that data set X is approximately normally distribute
then you know that the CumDist(x,X) cumulative distribution functi
can be computed by looking at the areas under the Bell Curve.
& What is the main advantage you and others dealing with you get fr

® Answer:

S

S

O

When you know that data set X is approximately normally distribt
then there is little need to send anyone the whole data set. Inste
can communicate most of its probability properties merely by
sending the two numbers

u = Expect(X) and o = y/Var(X)
and telling others that the data set is approximated normally dis
Others can fire up the their Area calculators and
do any probability estimates that they want.

For instance, when you say that your data set X is approximately
distributed with

Expect(X) = 9.4 and Var(X) = 2.0,
and you are asked to compute the Prob(x<10.7, X) = % of memk
of the data set that are below or equal to 10.7.

Keep in mind: We will do this
computation without knowing the data
set!

S

& Prob(x<10.7, X)

STAT.05.B2.the page 25

(PJu=94
o =42

Ao =1.4142135623731 Calculate

(x-w)
e 202

BellC x) =

(O BellCurve (x) TE
-1(x-9.4)
4 BellCurve (%)= 0.707106781186547 £ Y Substitute
] ¥

(@a=10.7

@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in

STAT.01.T1
@ The Monte Carlo Computations
() xlow = uw-50 (e) xhigh = a
/o xlow =2.32893218813452 Calculate
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%,) = Random(xlow, x)
(¢) yRandoms (k) = Random(ylow, yhigh)

1000
(o) fCounts(m, %)= Y (yRandoms|k|=< BellCurve| xRandoms{k,.
k=1

(¢) fBoxArea ()
(¢) AreaEst (7, x)

(5 - xlow) yhigh - ylow)

fCounts(m, x)
7000 fBoxArea ()

AreaEst (1, x)
1

() AreaAvg (1, 30) = 55
J

NP

O AreaAvg(1, a)
O\ AreaAvg (1, a)= AreaAvg(1,10.7) Substitute
[\ AreaAvg (1, a)=0.825793690570228 Calculate

STAT.05.B2.the page 26

4

0.25

[0
. ¢ *
0.2 PRI S
. P o
o.o

0.15

15

K About 82% of the members of the data set X are below or equal
This is true for ANY DATA SET X that is:
a) Normally distributed
b) Expected Value = 9.4
c) Variance = 2.0
Scientists like normally distributed data sets because they can "r
from the probability computations

& B.2.d) Random Numbers are easy to use with a computer to detern
but how did they do this before computers?

@ Back in the old days, before computers
and graphing and algebra software like
LiveMath, the practical need for
computing the Probabilities of a data set
X were still very real. How did they do it?

& Answer:

& Using trapezoids to approximate the area
under the Bell Curve. Take a look at this
example:

& Compute Prob(x £ 5.6) using only
trapezoids

Olg

(Wu =4.8
(o =0.5

STAT.05.B2.the page 27

_(-w)?
e 25°
(¢) BellCurve (x) = Ton o
(e)a =5.6
@ Prob(x < 5.6) = area under the Bell
Curve.
v |

| A
0.5

i

@ Choose some well-placed points to lay
down some trapezoids:

(¢) Points =(3,3.5,4,4.5,4.75,5,5.25,5.6)

4 |

1

.
3 X 4 T 6

Yy
-0.5

@ Now draw in the trapezoids determined
by these points.

STAT.05.B2.the page 28

4

0.8 /\
0.6

. £ =

0.2

O%—g— o Z 1 1 E i

@ Add up the areas of these trapezoids:
some trapezoids will have a bit too much
area, some will have a bit too little.

orT, = BellCurve (3.5)2+ BellCurve (3)_0.5

[T,=0.0141948711637994 0.5 Calculate
& T,=0.0070974355818997 Calculate

orT,-= BellCurve (4)+ZBeIICurve (3.5)‘0.5

[T,=0.124503803913141-0.5 Calculate
& T,=0.0622519019565706 Calculate

OT,- BellCurve (4.5)2+ BellCurve (4)_0.5

O T, =0.444145437571255-0.5 Calculate
& T,=0.222072718785628 Calculate

orT,= BellCurve (4.75)2+ BellCurve (4.5)‘0.25

N T,=0.730177150368811:0.25 Calculate
& T,=0.182544287592203 Calculate

STAT.05.B2.the page 29

a7, = BellCurve (5)+ ;eIICurve (4.75).0.25

DT = 0.765222687780335:0.25 Calculate
AN T5 =0.191305671945084 Calculate

OT,-= BellCurve (5.25)+ BellCurve (5)_0.25

2
O Tg=0.634355390202078-0.25 Calculate

& T =0.158588847550519 Calculate

o7, - BellCurve (5.6)+ BellCurve (5'25)(5.6—5.25)

2
[T, =0.37700608457821(5.6-5.25) Calculate

@ T,=0.131952129602374 Calculate
) T1+ T2+ T3+ T4+ T5+ T6+ T7
AT+ T+ T+ T,+T+ T +T,=0.955812993014278 Calc
@ Area of these trapezoids is 95.5% = Prob
(x £ 5.6, X) = CumDist(5.6, X)
@ All of these calculations above could be
done by hand (a little calculator, or the

calculator on your cell phone would make
it less painful):

@ Let's check this answer against the
Monte Carlo method for finding the area
under the Bell Curve to compute Prob(x

< 5.6, X):
Ole
@ Prob(x < 5.6, X)
(Wu =4.8
(Jo =0.5
(x-w)

e 202

(O BellCurve (x) = T
o —2(-4.8)°

Substitute

(o BellCurve (x)=2

J2m

STAT.05.B2.the page 30
(e)a =5.6
@ LiveMath Note: Using the functional approach

to generating random numbers as
demonstrated in

STAT.O01.T1

@ The Monte Carlo Computations
() xlow = u-50 (e) xhigh = a
(o) xlow =2.32893218813452
() ylow =0 () yhigh = BellCurve (u)
() xRandoms (k, 5) = Random(xlow,)
(¢) yRandoms (k) = Random(ylow, yhigh)

1000
> (yRandoms| k| = BellCurve| xRandoms {k, .

(¢) fBoxArea () = (s - xlow) yhigh - ylow)

(e) AreaEst (), x) fCou1nc’)cggm, “) tBoxArea (%)

AreaEst (7, x)
1

(o) fCounts(m, x)

NP

(o) AreaAvg (7, x) =

O AreaAvg(1, a)
[\ AreaAvg (1, a)= AreaAvg(1,5.6) Substitute

1
ZOJ-

4

0.6

0.4

Yy
0.2

@ Here is a more compact Trapezoidal
Probability Calculator

9@

STAT.05.B2.the page 31

(Wu =4.8
(o =0.5
(-w)
IC e 2o

Be X)=
(o) urve () T
(e)a =5.6
@ Prob(x < a.6) = area under the Bell

Curve.
.4

. N

sy 4N

0
3 X 4 5 6

@ Choose some well-placed points to lay
down some trapezoids:

(¢) Points =(3,3.5,4,4.5,4.75,5,5.25,5.6)

4

0.2 \
Y

01 —

X 4 5 6

& Now draw in the trapezoids determined
by these points.

STAT.05.B2.the page 32

4

. TN
’ A)

0.2
I BN S B B

& Add up the areas of these trapezoids:
some trapezoids will have a bit too much
area, some will have a bit too little.
General formula:

Points - 1 h7 h2
TrapArea =), (%) *w

k=1
ColsOf(Points)-1 BellCurve (Points K

N 1)+ BellCurve (Poi

k=1 2
N\ TrapArea = 0.955812993014278 Calculate

& Check using Monte Carlo method (that
you could never do by hand) for accuracy:

The Monte Carlo Computations
() xlow = uw-50 (s) xhigh = a
(o) xlow =2.32893218813452
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%,) = Random(xlow,)
(¢) yRandoms (k) = Random(ylow, yhigh)

1000
(o) fCounts(m, %)= Y (yRandoms|k|=< BellCurve| xRandoms{k,.

() TrapArea =

STAT.05.B2.the page 33
(¢) fBoxArea () = (s - xlow) yhigh - ylow)

(¢) AreaEst (7, x) = fCou1nc’)cgg@, “) fBoxArea (%)

AreaEst (1, x)
1

NP

(o) AreaAvg (7, %) = 5=

20
O AreaAvg(1, a)
[\ AreaAvg (1, a)= AreaAvg(1,5.6) Substitute
[\ AreaAvg (1, a)=0.948580695633875 Calculate

& Our computations on calculating
probability, for a normally distributed
data set, have gone from:
® Brute Force: Using the full data set,
calculate CumbDist(a,X) = Prob(x < a) via
brute force

(hundreds or thousands of calculations (
or morel!).

Computer required.

R Clever: Judiciously choose a few good
points on the BellCurve graph, and
compute the areas of their trapezoids:

Area of a few good trapezoids = Prob(x
< a).
No computer required!

@ That's how they computed probabilities
before computers - with trapezoidal area
under the Bell Curve.

STAT.05.B2.the page 34

This electonic material is © 2010 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.

For more information,

visit www.livemath.com

