STAT.05.B2.the page 1
< [IAUEL Introduction to Statistics

S Authors : Bruce Carpenter, Bill Davis, Michael Raschke and Jerry Uhl

Publisher : Math Everywhere, Inc. Distributor & Translator: MathMonkeys,
LLC

Adapted from Prob/Stat by : Robert Curtis.

S

STAT.05 Normal and Exponential
Basics B2

@ Experience with the starred problems will be useful for understanding developme
@ Graphics Primitives

1., The variables (X, s,t,z, y) are independent of |each other w|.

K B.2) Approximately normally distributed data sets:
The normal (Gaussian) distribution

® B.2.a.i) "Normal Distributions"

R The idea of "normally distributed" data sets is a big buzzword in
mathematical, physical, biological, and social sciences.

What do folks mean when they say that a data set is approximately
normally distributed?

@ Answer:

@ When they say that a data set is
approximately normally distributed, they
mean that the cumulative distribution
function CumDist(x,X) can be described
via some basic algebraic formulas that
are completely determined by the
Expected Value u and the Standard
Deviation o.
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@ Why is this useful? Because if someone
walks up to you on the street with a data
set X and says, "This data set is
approximately normally distributed", the
computing just two numbers of that set
X -- w and o -- will completely determine
the CumDist function, and thus the
computations of probabilities on the set
X

& B.2.a.ii) The Bell Curve Associated to a Data Set X
@ The

normal
law of error
stands out in the
experience of mankind
as one of the broadest
generalizations of natural
philosophy ~ It serves as the
guiding instrument in researches
in the physical and social sciences and
in medicine, agriculture and engineering ~
It is an indispensable tool for the analysis and the
interpretation of the basic data obtained by observation and experiment.

----This bell shaped design is by statistician W. J. Youden
@ Let's look at a nice data set X:

Oe
@ X=0.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,13,¢
& And let's compute the Expected Value u

and Standard Deviation o = +/Variance(X)
O u = ExpectVal(X)
A u =9.3495 Calculate

(Do =4/ Var(X)

N\ o =2.35355045622566  Calculate

& For any data set X, we look at the
associated Bell Curve that is defined by
the following formula using u and o, using
our old friend Euler's number

e=2.71828....
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& What is the area of that yello region
under the Bell Curve? We can't use
basic geometry to get it, but we can use
the Monte Carlo method!

& Remember the Monte Carlo idea:

Because the points are approximately uniformly distributed, yoi

Area enclosed by curve Number of random points inside ctL
Area enclosed by the box  Total number of random points insid
so that:

U

Area enclosed by curve
Number of random points inside curve
Total number of random points inside box

* Area e

Try it out
Oe
@ Prob(X< 8), so let a=8
(e)a=38
(e) xlow =0 (e) xhigh = a

(o) ylow =0 (o) yhigh =0.18 & Choosing yhigh to make sure box
encloses the region we want

-0.0902657464194174

J2m

(® BellCurve () = 0.424889977333939 £
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@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in

STAT.01.T1
(¢) xRandoms (k) = Random ( xlow, xhigh)
(¢) yRandoms (k) = Random( ylow, yhigh)

2500
() fCounts(m)= Y (yRandoms| k|=< BellCurve | xRandoms {k})
k'=1

(») BoxArea = ( xhigh - xlow )( yhigh - ylow)
A BoxArea = 80.18 Calculate Calculate
[\ BoxArea = 1.44 Calculate

(¢) AreaEst(m) = fCozusnc')cg( )

@ Do a few computations
() AreaEst (1)

/\ AreaEst (1) = m fCounts(1) BoxArea  Substitute

= I leul
/\ AreaEst (1) = 2500 .526-1.44  Calculate Calculate

N\ AreaEst (1) = 0.302976  Calculate
() AreaEst (2)
/\ AreaEst (2) = 0.298368 Calculate
() AreaEst (3)
/\ AreaEst (3) = 0.295488 Calculate
& Take 100 averages to get the best
estimate'

O+ 00, E AreaEst (/)

BoxArea

&100 E AreaEst (j)=0.28227456  Calculate

S, Now, remember that Prob(X<8) =
CumbDist (8, X)

(O CumDist (8, X)=0.275

@ Pretty close. Notice that the
computations above did not include the
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actual data set X - we only used u, o, the
BellCurve (x) formula, and the Monte
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Carlo method.

15

& Computation #2: Prob(X< 11.5)

@ Since we know the data set X here, and
we have LiveMath, we can compute this
probability using the CumbDist(x,X)
funciton:

Olg

(@ X=0.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,
& Prob(X< 11.5) = CumDist(11.5, X)
() CumDist(11.5, X)
/\ CumDist(11.5, X)=0.800000000000001  Calculate
@ So the probability of a pull from X being < 11.
5 is 80%. Easy peasy.

& But now let's look at something
interesting with the associated Bell curve

graph:
Oe
(@ uw =9.3495
(@) o =2.35355045622566
(x-w)?
25°

(O BellCurve (i) = e,JZ
T O
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-0.090265746419417

/& BellCurve ()= 0.424889977333939 £ 7
U

@ Prob(X<11.5), solet a=11.5
(@Ja=11.5
() BellCurve(a)
!/ BellCurve (a)= BellCurve (8)
1

/\ BellCurve (a)=0.424889977333939 £ OT6A387AB6555155,
/\ BellCurve (a)=0.14381161856011

4
'y |

D y N

i
S) X 10 15

& What is the area of that yello region
under the Bell Curve? We can't use
basic geometry to get it, but we can use
the Monte Carlo method!
& Remember the Monte Carlo idea:
Because the points are approximately uniformly distributed, yoi

Area enclosed by curve Number of random points inside ctL
Area enclosed by the box  Total number of random points insid
so that:

U

Area enclosed by curve
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Number of random points inside curve

_ — * Area e
Total number of random points inside box

Try it out
Oe
@ Prob(X<11.5), solet a=11.5
@a=11.5
(e) xlow =0 (e) xhigh = a
(o) ylow =0 (o) yhigh =0.18 & Choosing yhigh to make sure box

encloses the region we want
-0.0902657464194174

J2m

(® BellCurve () = 0.424889977333939 £

@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in
STAT.O01.T1

(¢) xRandoms (k) = Random ( xlow, xhigh)

(¢) yRandoms (k) = Random( ylow, yhigh)

2500
() fCounts(m)= Y (yRandoms| k|=< BellCurve| xRandoms {k})
k'=1

(») BoxArea = ( xhigh - xlow )( yhigh - ylow)
/\ BoxArea =2.07 Calculate
_ fCounts ()

(¢) AreaEst(m) = 5200 BoxArea

@ Do a few computations
() AreaEst (1)

/\ AreaEst (1) =0.818892 Calculate
() AreaEst (2)

/\ AreaEst (2) = 0.818892 Calculate
() AreaEst (3)

/\ AreaEst (3) = 0.827172  Calculate
& Take 100 averages to get the best

estimate:
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AreaEst ()

&100 E AreaEst (j)=0.8224938

S Now, remember that Prob(X<11.5) =
CumDist(11.5, X)

() CumbDist(11.5, X)=0.8

@ Pretty close. Notice that the
computations above did not include the
actual data set X - we only used u, o, the
BellCurve (x) formula, and the Monte
Carlo method.

Calculate
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H using 2 point |spotswr| colored [Blue w|.

@ Computation #3: Prob(9.2 < X <12.3)
@ Since we know the data set X here, and
we have LiveMath, we can compute this
probability using the CumbDist(x,X)
funciton:
Oe
(X =0.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,
& Prob(9.2 < X <12.3)
= CumDist(12.3, X) - CumDist(9.2, X)
() CumbDist(12.3, X)- CumbDist (9.2, X)
/\ CumDist(12.3, X)- CumDist (9.2, X)=0.905000000000001
O CumDist (12.3, X)- CumDist (9.2, X) = 0.44 Calculate
& So the probability of a pull from X being > 9.
2 and £ 11.5is 44%. Easy peasy.

& But now let's look at something
interesting with the associated Bell curve

graph:
Oe
(@ uw =9.3495
(@) o =2.35355045622566
_(-w)
e 25°
(O BellCurve (x) = T

-0.090265746419417

/& BellCurve () = 0.424889977333939 £ 7
U

@ Prob( 9.2 < X<12.3), so let a=9.2, b=
12.3

(e)a=9.2

@b=123
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\n Curve at (a,0)t +(1- t)(a, BellCurve|[ a]) where

e 7 using 10 point
Green w|.

surface has

colored

Magenta w|.

BellCurve| b |) where

colored

Purple w|.

right with a

& What is the area of that yello region

under the Bell Curve? We can't use
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basic geometry to get it, but we can use
the Monte Carlo method!

& Remember the Monte Carlo idea:
Because the points are approximately uniformly distributed, yoi
Area enclosed by curve Number of random points inside ctL

~

Area enclosed by the box  Total number of random points insid
so that:
Area enclosed by curve
Number of random points inside curve
Total number of random points inside box

U

* Area e

Try it out
Oe
@ Prob( 9.2 < X< 12.3), so let a=9.2, b=

12.3
(@a=9.2
)b =123
(¢) xlow = a (s) xhigh = b
(o) ylow =0 (o) yhigh =0.18 & Choosing yhigh to make sure box

encloses the region we want
-0.0902657464194174

J2m

(® BellCurve () = 0.424889977333939 £

@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in

STAT.01.T1
(¢) xRandoms (k) = Random ( xlow, xhigh)
(¢) yRandoms (k) = Random( ylow, yhigh)

2500
() fCounts(m)= Y (yRandoms| k|=< BellCurve| xRandoms {k})
k'=1

(») BoxArea = ( xhigh - xlow )( yhigh - ylow)
\ BoxArea = 0.558 Calculate
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(¢) AreaEst(m) = fCozusnc')cg( )

& Do a few computations
() AreaEst (1)

/\ AreaEst (1) =0.4178304  Calculate
() AreaEst (2)

/\ AreaEst (2) = 0.4167144  Calculate
() AreaEst (3)

/\ AreaEst (3) = 0.4303296  Calculate
& Take 100 averages to get the best

estimate'

O+ 00, E AreaEst ()

BoxArea

&100 E AreaEst (j) = 0.421544448  Calculate

S Now, remember that
Prob(9.2 < X < 12.3)

= CumDist(12.3, X) - CumDist(9.2, X)
(O CumbDist (12.3, X)- CumDist (9.2, X) = 0.44
@ Pretty close. Notice that the
computations above did not include the
actual data set X - we only used u, o, the
BellCurve (x) formula, and the Monte
Carlo method.

0.15

0.1

0.05

15
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0... 20 = left...right Stretch to Fit w
0...0.2 = bottom...top cropping [Moderately w

& Graph Building Blocks

July Lighting wr| surface has [no mesh w| and is shaded using [Solid w

Camel w| is the solid color.
\n Curve at (t, BellCurve[ t])where t =0... 20 with a [extra heavy w
line, colored |Red wr|.

# Scatter plot of ( xRandoms| k |, yRandoms| k [) where k =1 ...250
using 2 point |spotswr| colored [Blue w|.

@ Computation #4: Area of BellCurve vs.
CumbDist(x,X)

& We will now set up a Case Theory that
graphs the CumbDist(x,X) function, along
with a number of Area computations
from the Bell Curve.

Ol@ Area under Bell Curve vs. CumDist (x,X)=Prob(x<X)

(9 X =(8.9,8,12,8.1,6.2,12,9.6,9.5,9.1,6.7,9.4,8,8.9,11,9.4,
(O u = ExpectVal(X)

mu =9.3495 Calculate
o =4 Var(X)

N\ o =45.53919975  Calculate

/oy o =2.35355045622566  Calculate
_(x-u)
202

J2n o

(O BellCurve (x) = €

-0.090265746419417

/& BellCurve ()= 0.424889977333939 £ 7
U

& N = Number of Area values to compute.
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Depending upon your patience level, you may
increase the number chop-up points, as well as
increase the number of random samples and
number of averages taken.

&N=8

& K = Which Area Region to show
@K=3

@ The Monte Carlo Computations
(o) xlow =0
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%, ) = Random xlow, x)
(¢) yRandoms (k) = Random ylow, yhigh)

1000
) (yRandoms[k] < BellCurve [ xRandoms { k

(¢) fCounts (1, x
(¢) fBoxArea ()
(¢) AreaEst (7, x)

(x onw)( yhigh - ylow)

fCounts(m, x)
7000 fBoxArea ()

20
(9) AreaAvg (1, %)= 55 > AreaEst(n, x)
j=1

@ Black squares height = Area under Bell
Curve at Blue Spots
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& The accumulating areas under the Bell
Curve match up perfectly with the
CumbDist(x,X) function.

@ This means: You can compute
probabilities of the data set X by
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examining the AREA under the associated
Bell curve.
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& B.2.b.i) Does this Bell curve Area -> CumDist(x,X) work for all
data sets X?

@ Does this Area under the Bell curve will
compute the Prob(x<X) = CumbDist(x,X)
trickery work for all data sets X?

® Answer:
2 Nope.

& The data sets that this does work for are
called approximately normally distributed.

& B.2.b.ii) Checking to see if a data set X is appoximately normally di:
R How do you tell whether a given data set X is approximately norma
K Answer:

@ Just look at your data set in the Monte Carlo computation
Case Theory above, and compare if the areas under the Bell
curve match up with the CumDist(x,X) function.

Ol@ Area under Bell Curve vs. CumDist (x,X)=Prob(x<X)

@) X =(12.8193,6.24358,0.392916,5.74745,18.8538,4.97144,
O uw = ExpectVal(X)
@ u =1.47577232  Calculate
Do =4 Var(X)
o =8.23018899672781  Calculate
_(x-u)
202

(O BellCurve (x) = e,JZ
T O

-0.0073815979594192;

J2m

4 BellCurve ()= 0.121503892607762 £

& N = Number of Area values to compute.

Depending upon your patience level, you may
increase the number chop-up points, as well as
increase the number of random samples and
number of averages taken.
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&N=8

& K = Which Area Region to show
@OK=3

@ The Monte Carlo Computations
(e) xlow = -20
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%, ) = Random( xlow, )
(¢) yRandoms (k) = Random( ylow, yhigh)

1000
> (yRandoms| k| = BellCurve| xRandoms {k, .

(¢) fCounts (7, x)

(¢) fBoxArea () = (s - xlow ) yhigh - ylow)

(¢) AreaEst (7, x) fCou&’)cg%@, “) fBoxArea (%)

20
(9) AreaAvg (1, %)= 55 > AreaEst(n, x)
j=1

@ Black squares height = Area under Bell
Curve at Blue Spots
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0.8

0.6

0.4

—0.2

"W Dwnx"nl

T e

e M"J{‘

& Not much doubt about it.

The Area squares match up near perfectly to the
CumbDist(x,X) cumulative distribution function of X.
The Call:
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The given data set X is approximately normally distributed.

< Try it again with this new data set:
Ol@ Area under Bell Curve vs. CumDist(x,X)=Prob(x<X)

@ X =(1.5,0.38,4.2,0.71,6.1,1.4,2.2,0.046,0.31,0.68,0.91,5.3,
O u = ExpectVal(X)
o u =1.42471607142857  Calculate
Qo =4 Var(X)
& o =1.49910960302593  Calculate
(-wp
e 267

J2n o

(O BellCurve (x) =

-0.22248627863964(x -

4 BellCurve () = 0.667062633700374 < 7
TT

& N = Number of Area values to compute.

Depending upon your patience level, you may
increase the number chop-up points, as well as
increase the number of random samples and
number of averages taken.

&N=8
& K = Which Area Region to show
@K=3

@ The Monte Carlo Computations
() xlow = min(X)
/& xlow =0.0012 Calculate
() xhigh = max(X)
/& xhigh =9.9 Calculate
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%, ) = Random( xlow, )
(¢) yRandoms (k) = Random( ylow, yhigh)

1000
> (yRandoms| k| = BellCurve| xRandoms {k, .

(¢) fCounts (7, x)

(¢) fBoxArea () = (s - xlow ) yhigh - ylow)
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(o) AreaEst(m, )=

fCounts (), 5)

(o) AreaAvg (7, x) =

T000 fBoxArea ()

20
1
20, z 1 AreaEst (7, x)

@ Black squares height = Area under Bell
Curve at Blue Spots

4

0.8 IJJ

0.6 |
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&)

Not much doubt about it.

The Area squares do not match up to the

CumbDist(x,X) cumulative distribution function of X.

The Call:

The given data set X is NOT approximately normally distributed.

& B.2.c) The main advantage you get when you have an approximatel
normally distributed data set
& When you know that data set X is approximately normally distribute
then you know that the CumDist(x,X) cumulative distribution functi
can be computed by looking at the areas under the Bell Curve.
& What is the main advantage you and others dealing with you get fr

® Answer:

S

S

O

When you know that data set X is approximately normally distribt
then there is little need to send anyone the whole data set. Inste
can communicate most of its probability properties merely by
sending the two numbers

u = Expect(X) and o = y/Var(X)
and telling others that the data set is approximated normally dis
Others can fire up the their Area calculators and
do any probability estimates that they want.

For instance, when you say that your data set X is approximately
distributed with

Expect(X) = 9.4 and Var(X) = 2.0,
and you are asked to compute the Prob(x<10.7, X) = % of memk
of the data set that are below or equal to 10.7.

Keep in mind: We will do this
computation without knowing the data
set!

S

& Prob(x<10.7, X)
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(PJu=94
o =42

Ao =1.4142135623731 Calculate

(x-w)
e 202

BellC x) =

(O BellCurve (x) TE
-1(x-9.4)
4 BellCurve (%)= 0.707106781186547 £ Y Substitute
] ¥

(@a=10.7

@ LiveMath Note: Using the functional approach
to generating random numbers as
demonstrated in

STAT.01.T1
@ The Monte Carlo Computations
() xlow = uw-50 (e) xhigh = a
/o xlow =2.32893218813452  Calculate
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%, ) = Random( xlow, x)
(¢) yRandoms (k) = Random( ylow, yhigh)

1000
(o) fCounts(m, %)= Y (yRandoms|k|=< BellCurve| xRandoms{k,.
k=1

(¢) fBoxArea ()
(¢) AreaEst (7, x)

(5 - xlow ) yhigh - ylow)

fCounts(m, x)
7000 fBoxArea ()

AreaEst (1, x)
1

() AreaAvg (1, 30) = 55
J

NP

O AreaAvg(1, a)
O\ AreaAvg (1, a)= AreaAvg(1,10.7) Substitute
[\ AreaAvg (1, a)=0.825793690570228  Calculate
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K About 82% of the members of the data set X are below or equal
This is true for ANY DATA SET X that is:
a) Normally distributed
b) Expected Value = 9.4
c) Variance = 2.0
Scientists like normally distributed data sets because they can "r
from the probability computations

& B.2.d) Random Numbers are easy to use with a computer to detern
but how did they do this before computers?

@ Back in the old days, before computers
and graphing and algebra software like
LiveMath, the practical need for
computing the Probabilities of a data set
X were still very real. How did they do it?

& Answer:

& Using trapezoids to approximate the area
under the Bell Curve. Take a look at this
example:

& Compute Prob( x £ 5.6 ) using only
trapezoids

Olg

(Wu =4.8
(o =0.5
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_(-w)?
e 25°
(¢) BellCurve (x) = Ton o
(e)a =5.6
@ Prob( x < 5.6) = area under the Bell
Curve.
v |

| A
0.5

i

@ Choose some well-placed points to lay
down some trapezoids:

(¢) Points =(3,3.5,4,4.5,4.75,5,5.25,5.6)

4 |

1

.
3 X 4 T 6

Yy
-0.5

@ Now draw in the trapezoids determined
by these points.
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4

0.8 /\
0.6

. £ =

0.2

O%—g— o Z 1 1 E i

@ Add up the areas of these trapezoids:
some trapezoids will have a bit too much
area, some will have a bit too little.

orT, = BellCurve (3.5)2+ BellCurve (3)_0.5

[ T,=0.0141948711637994 0.5  Calculate
& T,=0.0070974355818997  Calculate

orT,-= BellCurve (4)+ZBeIICurve (3.5)‘0.5

[ T,=0.124503803913141-0.5  Calculate
& T,=0.0622519019565706  Calculate

OT,- BellCurve (4.5)2+ BellCurve (4)_0.5

O T, =0.444145437571255-0.5 Calculate
& T,=0.222072718785628  Calculate

orT,= BellCurve (4.75)2+ BellCurve (4.5)‘0.25

N T,=0.730177150368811:0.25 Calculate
& T,=0.182544287592203 Calculate
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a7, = BellCurve (5)+ ;eIICurve (4.75).0.25

DT = 0.765222687780335:0.25 Calculate
AN T5 =0.191305671945084  Calculate

OT,-= BellCurve (5.25)+ BellCurve (5)_0.25

2
O Tg=0.634355390202078-0.25  Calculate

& T =0.158588847550519  Calculate

o7, - BellCurve (5.6)+ BellCurve (5'25)(5.6—5.25)

2
[ T, =0.37700608457821(5.6-5.25) Calculate

@ T,=0.131952129602374 Calculate
) T1+ T2+ T3+ T4+ T5+ T6+ T7
AT+ T+ T+ T,+T+ T +T,=0.955812993014278 Calc
@ Area of these trapezoids is 95.5% = Prob
(x £ 5.6, X) = CumDist(5.6, X)
@ All of these calculations above could be
done by hand (a little calculator, or the

calculator on your cell phone would make
it less painful):

@ Let's check this answer against the
Monte Carlo method for finding the area
under the Bell Curve to compute Prob(x

< 5.6, X):
Ole
@ Prob(x < 5.6, X)
(Wu =4.8
(Jo =0.5
(x-w)

e 202

(O BellCurve (x) = T
o —2(-4.8)°

Substitute

(o BellCurve (x)=2

J2m
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(e)a =5.6
@ LiveMath Note: Using the functional approach

to generating random numbers as
demonstrated in

STAT.O01.T1

@ The Monte Carlo Computations
() xlow = u-50 (e) xhigh = a
(o) xlow =2.32893218813452
() ylow =0 () yhigh = BellCurve (u)
() xRandoms (k, 5) = Random( xlow, )
(¢) yRandoms (k) = Random( ylow, yhigh)

1000
> (yRandoms| k| = BellCurve| xRandoms {k, .

(¢) fBoxArea () = (s - xlow ) yhigh - ylow)

(e) AreaEst (), x) fCou1nc’)cggm, “) tBoxArea (%)

AreaEst (7, x)
1

(o) fCounts(m, x)

NP

(o) AreaAvg (7, x) =

O AreaAvg(1, a)
[\ AreaAvg (1, a)= AreaAvg(1,5.6) Substitute

1
ZOJ-

4

0.6

0.4

Yy
0.2

@ Here is a more compact Trapezoidal
Probability Calculator

9@
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(Wu =4.8
(o =0.5
(-w)
IC e 2o

Be X)=
(o) urve () T
(e)a =5.6
@ Prob( x < a.6) = area under the Bell

Curve.
.4

. N

sy 4N

0
3 X 4 5 6

@ Choose some well-placed points to lay
down some trapezoids:

(¢) Points =(3,3.5,4,4.5,4.75,5,5.25,5.6)

4

0.2 \
Y

01 —

X 4 5 6

& Now draw in the trapezoids determined
by these points.
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4

. TN
’ A )

0.2
I BN S B B

& Add up the areas of these trapezoids:
some trapezoids will have a bit too much
area, some will have a bit too little.
General formula:

# Points - 1 h7 h2
TrapArea = ), (%) *w

k=1
ColsOf( Points)-1 BellCurve ( Points K

N 1)+ BellCurve ( Poi

k=1 2
N\ TrapArea = 0.955812993014278  Calculate

& Check using Monte Carlo method (that
you could never do by hand) for accuracy:

The Monte Carlo Computations
() xlow = uw-50 (s) xhigh = a
(o) xlow =2.32893218813452
() ylow =0 () yhigh = BellCurve (u)
(¢) xRandoms (%, ) = Random( xlow, )
(¢) yRandoms (k) = Random( ylow, yhigh)

1000
(o) fCounts(m, %)= Y (yRandoms|k|=< BellCurve| xRandoms{k,.

() TrapArea =
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(¢) fBoxArea () = (s - xlow ) yhigh - ylow)

(¢) AreaEst (7, x) = fCou1nc’)cgg@, “) fBoxArea (%)

AreaEst (1, x)
1

NP

(o) AreaAvg (7, %) = 5=

20
O AreaAvg(1, a)
[\ AreaAvg (1, a)= AreaAvg(1,5.6) Substitute
[\ AreaAvg (1, a)=0.948580695633875  Calculate

& Our computations on calculating
probability, for a normally distributed
data set, have gone from:
® Brute Force: Using the full data set,
calculate CumbDist(a,X) = Prob( x < a ) via
brute force

(hundreds or thousands of calculations (
or morel!).

Computer required.

R Clever: Judiciously choose a few good
points on the BellCurve graph, and
compute the areas of their trapezoids:

Area of a few good trapezoids = Prob( x
< a).
No computer required!

@ That's how they computed probabilities
before computers - with trapezoidal area
under the Bell Curve.




STAT.05.B2.the page 34

This electonic material is © 2010 by
MathEverywhere, LLC, licensed to
MathMonkeys, LLC.

For more information,

visit www.livemath.com




