# Summer 2020 Vector Calculus Summer 2020 Online Calculus Academic Credits

Summer 2020 @ Roger Williams UniversitySummer 2020 Distance Calculus @ Roger Williams University operates 24/7/365 with open enrollment outside of the traditional academic calendar. We offer all of our courses during the Summer, Fall, Winter, before semesters traditionally start, after semesters start, during vacation weeks ... I think you get the idea :)

M

If you wish to complete a Vector Calculus course online, make sure you take this course from a

**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

The free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

There are more than a few actual colleges/universities offering Vector Calculus courses online. Be careful as you investigate these courses - they may not fit your needs for actual course instruction and timing. Most require you enroll and engage your course during their standard academic semesters. Most will have you use a publisher's "automated textbook" which is .... um .... well, if you like that kind of thing, then you have a few options over there at those schools.

Summer 2020 Distance Calculus is all about real university-level calculus courses - that's all we do! We have been running these courses for 20+ years, so we know how to get students through the these courses fast fast fast!

Here is a video about earning real academic credits in Vector Calculus from Summer 2020 Distance Calculus @ Roger Williams University:

## Earning Real Academic Credits for Calculus

## Applied Calculus vs Calculus I

## Distance Calculus - Student Reviews

*Date Posted: Feb 28, 2020*

Review by: Teddy M.

Courses Completed: Precalculus, Calculus I

Review: Pros: once you get going, you can go really fast. The visual textbook is pretty cool. The instructors were very responsive. Cons: the movies are great, but the software crashes more than it should. Sometimes it is just a hassle doing things in the software instead of on paper, but once I got used to the software, it was ok.

Transferred Credits to: Texas Christian University

*Date Posted: Jan 12, 2020*

Review by: Brian Finley

Courses Completed: Calculus II

Review: I took Calculus II through Distance Calculus and can't recommend it enough. Being able to take the course at my own pace while I was working full time was tremendously helpful, especially since I hadn't taken a math course for 5 years prior. The instruction was excellent and the software they used to teach the course was intuitive and facilitated the learning process very well. This calc II class enabled me to take multivariable calc, linear algebra, and real analysis at Harvard University's extension school, which ultimately qualified me for the economics PhD program that I will graduate from next year. 8 years on, I'm still grateful to Professor Curtis and Distance Calculus.

*Date Posted: Jan 19, 2020*

Review by: William Williams

Student Email: wf.williamster@gmail.com

Courses Completed: Linear Algebra, Probability Theory

Review: I have difficulty learning calculus based math, akin to dyslexia when examining the symbolic forms, equations, definitions, and problems. Mathematica based calculus courses allowed me to continue with my studies because of the option of seeing the math expressed as a programming language for which I have no difficulty in interpreting visually and the immediate feedback of graphical representations of functions, equations, or data makes a huge impact on understanding. Mathematica based calculus courses should be the default method of teaching Calculus everywhere.

Transferred Credits to: Thomas Edison State College

## Distance Calculus - Curriculum Exploration

### VC.06 - Sources

- V6: VC.06 - Sources:
- V6.1: VC.06 - Sources - Basics
- V6.1.a: VC.06.B1: Using a 2D integral to measure flow across closed curves
- V6.1.b: VC.06.B2: Sources, sinks, and the divergence of a vector field
- V6.1.c: VC.06.B3: Flow-across-the-curve measurements in the presence of singularities
- V6.2: VC.06 - Sources - Tutorials
- V6.2.a: VC.06.T1: The pleasure of calculating path integrals when mixed partials equation = 0
- V6.2.b: VC.06.T2: Using a 2D integral to measure flow along closed curves
- V6.2.c: VC.06.T3: Rotation (swirl) of a vector field
- V6.2.d: VC.06.T4: Summary of main ideas.
- V6.3: VC.06 - Sources - Give It a Try
- V6.3.a: VC.06.G1: Sources, sinks and swirls
- V6.3.b: VC.06.G2: Singularity sources, sinks and swirls
- V6.3.c: VC.06.G3: Agree or disagree
- V6.3.d: VC.06.G4: Flow calculations in the presence of singularities
- V6.3.e: VC.06.G5: 2D electric fields, dipole fields, and Gauss's law in physics
- V6.3.f: VC.06.G6: The Laplacian and steady-state heat
- V6.3.g: VC.06.G7: Calculating path integrals in the presence of singularities
- V6.3.h: VC.06.G8: Water and electricity
- V6.3.i: VC.06.G9: Is parallel flow always irrotational?
- V6.3.j: VC.06.G10: Spin fields
- V6.4: VC.06 - Sources - Literacy