Course: Calculus I
Number: Math 213
Credit-Hours: 4 credits [semester credit hours]

Course Description: Covers the differential calculus of a single variable and introduces integration. Topics include limits and continuity, differentiation of algebraic and transcendental functions, applications of derivatives to rates of change, optimization, and curve sketching, and the Fundamental Theorem.

Prerequisites: Successful completion (C- or higher) of MATH 136 (Precalculus with Trigonometry) or equivalent.

Course Workload: 4 semester credit hours • 3 student work hours per credit hour • 14 week Carnegie semester = 168 hours student course workload average

Examination Requirements: Proctored written final examination must be passed at 60% or higher to earn passing grade in course. “B” and “A” grade paths have additional examinations. See http://www.distancecalculus.com/grades/ for more information.

Course Professor: Robert R. Curtis, Ph.D. <robert@distancecalculus.com>

University Information: Roger Williams University, University College, 1 Empire Plaza, Providence, RI, USA 02903. Accredited by New England Commission of Higher Education (NECHE). See https://www.rwu.edu/academics/accreditations for more information.

E-Textbook: “The Primitives of Precalculus” by Robert R. Curtis, Ph.D.
E-Textbook: “Calculus&LiveMath” by Davis/Porta/Uhl et al. / Curtis
Mathematics Software: LiveMath™ Computer Algebra & Graphing System
Detailed Syllabus

1. Getting Started
 1.1. Email and Chat
 1.2. Learning About the Course
 1.3. Required Hardware
 1.4. Software Fundamentals

2. The Big Picture
 2.1. Solving (easy) equations in 1 variable.
 2.2. What if you can’t solve for x?
 2.3. Finding solutions numerically
 2.4. Finding solutions graphically
 2.5. Solving equations of more than 1 variable

3. Functions
 3.1. Function notation.
 3.2. Data sets
 3.3. Graphing functions
 3.4. Data sets and smooth curves
 3.5. Domain and Range
 3.6. Algebraic combinations of functions

4. Linear Functions
 4.1. Algebraic definition
 4.2. Slope
 4.3. Graphing linear functions by hand
 4.4. Properties of linear functions
 4.5. Linear data sets

5. Quadratic Functions
 5.1. Algebraic definition
 5.2. Graphing and Properties of Quadratic Functions
 5.3. Solving quadratic equations algebraically: Factoring
 5.4. Solving quadratic equations algebraically: Quadratic formula
 5.5. Solving quadratic equations numerically and graphically

6. Power and Polynomial Functions
 6.1. Algebraic definition
 6.2. Graphing and Properties of Polynomial Functions
 6.3. Solving polynomial equations algebraically: factoring
 6.4. Solving polynomial equations numerically and graphically
 6.5. Radicals and fractional exponents
7. Rational Polynomial Functions
 7.1. Algebraic definition
 7.2. Graphing and Properties of Rational Polynomial Functions
 7.3. Solving rational polynomial equations algebraically: factoring

8. Exponential Functions
 8.1. Algebraic definition
 8.2. Graphing and Properties of Exponential Functions
 8.3. Solving exponential equations numerically and graphically
 8.4. Exponential Growth and Applications
 8.5. Data sets and exponential functions

9. Logarithmic Functions
 9.1. Inverse Functions
 9.2. Algebraic Definition
 9.3. Graphing and Properties of Logarithmic Functions
 9.4. Solving exponential and logarithmic equations algebraically
 9.5. Solving logarithmic equations numerically and graphically
 9.6. Logarithmic Growth and Applications
 9.7. Data sets and logarithmic functions

10. Growth: Preparing for the Derivative
 10.1. Growth of Linear Functions
 10.2. Growth of Power Functions
 10.3. Growth of Exponential Functions
 10.4. Dominance of Growth of Functions
 10.5. Percentage Growth of Functions
 10.6. Global Scale: Infinite Limits
 10.7. Data Functions and Interpolation
 10.8. Approximation of Functions by Linear Functions

11. Continuity
 11.1. Limits
 11.2. Continuous Functions
 11.3. Jump Discontinuities
 11.4. Piecewise Functions and Continuity
 11.5. Limit Rules
12. Exponential Functions and Natural Logarithms
 12.1. e = Euler’s Number
 12.2. Natural Logarithm
 12.3. Growth Analysis
 12.4. Applications: Carbon Dating
 12.5. Percentage Growth and Steady Growth of Exponential Functions
 12.6. Data Functions and Logarithmic Analysis
 12.7. Inverse Functions
 12.8. Applications: Compound Interest and Finance
 12.9. Applications: World Population

13. The Derivative of Polynomial, Exponential, Logarithmic, and Fractional Powers
 13.1. Instantaneous Growth Rates
 13.2. Definition of the Derivative
 13.3. Computing the Derivative Graphically
 13.4. Computing the Derivative Algebraically
 13.5. Computing the Derivative Numerically
 13.6. Average Growth Rate vs. Instantaneous Growth Rate
 13.7. Applications of the Derivative: Spread of Disease
 13.8. Finding Maxima and Minima of Functions
 13.9. Relating a Function and Its Derivative

14. Computing Derivatives
 14.1. Sum, Difference, Product, Quotient Rule
 14.2. Chain Rule
 14.3. Logarithmic Differentiation
 14.4. Instantaneous Percentage Growth
 14.5. Growth Dominance
 14.6. Applications: Linear Dimensions

15. Using Derivatives
 15.1. Finding Maxima and Minima
 15.2. Finding Good Representative Plots
 15.3. Applications: Maximizing Volume
 15.4. The Second Derivative
 15.5. Applications: The Space Shuttle Challenger
16. Integration
 16.1. Measuring Area Under a Curve
 16.2. Definition of the Integral
 16.3. Properties of Integrals, Symmetry
 16.4. Integrals of Data Functions
 16.5. Numerical Methods: Rectangles, Trapezoids
 16.6. Undefined Integrals
 16.7. Numerical Calculation of Integrals

17. Fundamental Theorem of Calculus
 17.1. Derivative of an Integral
 17.2. Integral of a Derivative
 17.3. Fundamental Formula
 17.4. Distance, Velocity, and Acceleration
 17.5. Improper Integrals
 17.6. More Properties of Integrals
 17.7. Applications: Measure Accumulation Totals
 17.8. Indefinite Integrals and Antiderivatives
 17.9. u-Substitution