COURSE SYLLABUS

Course: Probability and Statistics
Number: Math 315
Credit-Hours: 3 credits [semester credit hours]
Course Description: Emphasizes probability, probability density functions, distributions, statistical inferences and estimation, correlation, and regression.

Prerequisites: Successful completion (C- or higher) of MATH 214 (Calculus II) or equivalent.
Course Workload: 3 semester credit hours $\bullet 3$ student work hours per credit hour $\bullet 14$ week Carnegie semester $=126$ hours student course workload average

Examination Requirements: Proctored written final examination must be passed at 60% or higher to earn passing grade in course. "B" and "A" grade paths have additional examinations. See http://www.distancecalculus.com/grades/ for more information.

Course Professor: Robert R. Curtis, Ph.D. <robert@ distancecalculus.com>
University Information: Roger Williams University, University College, 1 Empire Plaza, Providence, RI, USA 02903. Accredited by New England Commission of Higher Education (NECHE). See https://www.rwu.edu/academics/accreditations for more information.

E-Textbook: "Probability, Statistics \& LiveMath" by Davis/Porta/Uhl et al Mathematics Software: LiveMath ${ }^{\text {TM }}$ Computer Algebra \& Graphing System and/or Mathematica ${ }^{\text {TM }}$ Computer Algebra \& Graphing System

Detailed Syllabus

1. Getting Started
1.1. Email and Chat
1.2. Learning About the Course
1.3. Required Hardware
1.4. Software Fundamentals
2. Simulations
2.1. Uniform Distributions
2.2. Monte Carlo Methods
2.3. Random Walks
2.4. Shooting craps; Iterated Fractals.
3. Data Analysis
3.1. Frequency
3.2. Expected Value
3.3. Cumulative Distributions
3.4. Variance
3.5. Histograms
3.6. Related formulas for Expected Values and Variance
4. Probabilities
4.1. Calculating Probability
4.2. Union and Intersection and Probability
4.3. Conditional Probability Formula
4.4. Independence
4.5. Indicator functions
5. More Data Analysis
5.1. Markov's Inequality
5.2. Chebyshev's Theorem
5.3. Laws of Large Numbers
5.4. One-Sided Chebyshev Theorem
6. Normal and Exponential Distributions
6.1. Approximately Normally Distributed Sets
6.2. Normal Distribution
6.3. Approximately Exponentially Distributed Sets
6.4. Exponential Distribution
6.5. Memoryless Property of Exponential Distributions
7. Random Variables
7.1. "Random Variables"
7.2. Discrete Random Variables
7.3. Continuous Random Variables
7.4. Probability Density Functions
7.5. Cumulative Distribution Functions
7.6. Expected Values and Variance
7.7. Markov, Chebyshev, and Law of Large Numbers Revisited
7.8. Mean, Median, and Mode
8. Joint Distributions
8.1. Joint Probability Calculations
8.2. Discrete \& Continuous
8.3. Expected Values, Covariance, and Correlation.
8.4. Conditional Probability Calculations
8.5. Conditional Expectations
8.6. The Law of Total Probability
9. Central Limit Theorem
9.1. Generating Functions for Discrete Random Variables
9.2. Generating Functions for Continuous Random Variables
9.3. Generating Functions and Independence
9.4. Central Limit Theorem
9.5. Fourier Transforms
9.6. Chi-squared and Gamma random variables

Additional Optional Modules:
10. Counting
10.1. Binomial and Poisson counting
10.2. Binomial and Poisson Distributions
11. Statistics
11.1. Sampling
11.2. Confidence Intervals
11.3. Hypothesis testing

