

COURSE SYLLABUS

Course:Probability and StatisticsNumber:Math 315Credit-Hours:3 credits [semester credit hours]

Course Description: Emphasizes probability, probability density functions, distributions, statistical inferences and estimation, correlation, and regression.

Prerequisites: Successful completion (C- or higher) of MATH 214 (Calculus II) or equivalent.

Course Workload: 3 semester credit hours • 3 student work hours per credit hour • 14 week Carnegie semester = 126 hours student course workload average

Examination Requirements: Proctored written final examination must be passed at 60% or higher to earn passing grade in course. "B" and "A" grade paths have additional examinations. See <u>http://www.distancecalculus.com/grades/</u> for more information.

Course Professor: Robert R. Curtis, Ph.D. < robert@distancecalculus.com>

University Information: Roger Williams University, University College, 1 Empire Plaza, Providence, RI, USA 02903. Accredited by New England Commission of Higher Education (NECHE). See https://www.rwu.edu/academics/accreditations for more information.

E-Textbook: "Probability, Statistics & LiveMath" by Davis/Porta/Uhl et al Mathematics Software: LiveMath[™] Computer Algebra & Graphing System and/or Mathematica[™] Computer Algebra & Graphing System

Detailed Syllabus

- 1. Getting Started
 - 1.1. Email and Chat
 - 1.2. Learning About the Course
 - 1.3. Required Hardware
 - 1.4. Software Fundamentals
- 2. Simulations
 - 2.1. Uniform Distributions
 - 2.2. Monte Carlo Methods
 - 2.3. Random Walks
 - 2.4. Shooting craps; Iterated Fractals.
- 3. Data Analysis
 - 3.1. Frequency
 - 3.2. Expected Value
 - 3.3. Cumulative Distributions
 - 3.4. Variance
 - 3.5. Histograms
 - 3.6. Related formulas for Expected Values and Variance
- 4. Probabilities
 - 4.1. Calculating Probability
 - 4.2. Union and Intersection and Probability
 - 4.3. Conditional Probability Formula
 - 4.4. Independence
 - 4.5. Indicator functions
- 5. More Data Analysis
 - 5.1. Markov's Inequality
 - 5.2. Chebyshev's Theorem
 - 5.3. Laws of Large Numbers
 - 5.4. One-Sided Chebyshev Theorem
- 6. Normal and Exponential Distributions
 - 6.1. Approximately Normally Distributed Sets
 - 6.2. Normal Distribution
 - 6.3. Approximately Exponentially Distributed Sets
 - 6.4. Exponential Distribution
 - 6.5. Memoryless Property of Exponential Distributions

- 7. Random Variables
 - 7.1. "Random Variables"
 - 7.2. Discrete Random Variables
 - 7.3. Continuous Random Variables
 - 7.4. Probability Density Functions
 - 7.5. Cumulative Distribution Functions
 - 7.6. Expected Values and Variance
 - 7.7. Markov, Chebyshev, and Law of Large Numbers Revisited
 - 7.8. Mean, Median, and Mode
- 8. Joint Distributions
 - 8.1. Joint Probability Calculations
 - 8.2. Discrete & Continuous
 - 8.3. Expected Values, Covariance, and Correlation.
 - 8.4. Conditional Probability Calculations
 - 8.5. Conditional Expectations
 - 8.6. The Law of Total Probability
- 9. Central Limit Theorem
 - 9.1. Generating Functions for Discrete Random Variables
 - 9.2. Generating Functions for Continuous Random Variables
 - 9.3. Generating Functions and Independence
 - 9.4. Central Limit Theorem
 - 9.5. Fourier Transforms
 - 9.6. Chi-squared and Gamma random variables

Additional Optional Modules:

- 10. Counting
 - 10.1. Binomial and Poisson counting
 - 10.2. Binomial and Poisson Distributions
- 11. Statistics
 - 11.1. Sampling
 - 11.2. Confidence Intervals
 - 11.3. Hypothesis testing