

COURSE SYLLABUS

Course:Calculus of Several VariablesNumber:Math 351Credit-Hours:4 credits [semester credit hours]

Course Description: Introduces functions of several variables including partial differentiation; multiple integrals, line and surface integrals, and the theorems of Green, Gauss, and Stokes.

Prerequisites: Successful completion (C- or higher) of MATH 214 (Calculus II) or equivalent.

Course Workload: 4 semester credit hours • 3 student work hours per credit hour • 14 week Carnegie semester = 168 hours student course workload average

Examination Requirements: Proctored written final examination must be passed at 60% or higher to earn passing grade in course. "B" and "A" grade paths have additional examinations. See <u>http://www.distancecalculus.com/grades/</u> for more information.

Course Professor: Robert R. Curtis, Ph.D. < robert@distancecalculus.com > or < rcurtis@rwu.edu >

University Information: Roger Williams University, University College, 1 Empire Plaza, Providence, RI, USA 02903. Accredited by New England Commission of Higher Education (NECHE). See <u>https://www.rwu.edu/academics/accreditations</u> for more information.

E-Textbook: "Calculus&LiveMath" by Davis/Porta/Uhl et al. / Curtis Mathematics Software: LiveMath[™] Computer Algebra & Graphing System

Detailed Syllabus

- 1. Getting Started
 - 1.1. Email and Chat
 - 1.2. Learning About the Course
 - 1.3. Required Hardware
 - 1.4. Software Fundamentals
- 2. Vectors
 - 2.1. Geometry of Vectors
 - 2.2. Tangent Vectors; Velocity Vectors, Acceleration Vectors
 - 2.3. Vector Length
 - 2.4. Dot Products
 - 2.5. Vector Projection
 - 2.6. Perpendicularity
 - 2.7. Lines
 - 2.8. Normal Vectors
 - 2.9. Cross Product
 - 2.10. Planes in 3D
 - 2.11. Normal, Binormals, Curvature, Torque

3. The Derivative

- 3.1. Partial Derivatives
- 3.2. Gradient
- 3.3. Level Curves and Surfaces
- 3.4. Linearization
- 3.5. Total Differential
- 3.6. Data Fitting
- 3.7. Lagrange Multipliers
- 4. Vector Fields
 - 4.1. Plotting and Trajectories
 - 4.2. Flow-Along and Flow-Across Curves
 - 4.3. Differential Equations and Vector Fields
 - 4.4. Path Integrals
 - 4.5. Gradient Fields
 - 4.6. Sources, Sinks
 - 4.7. Divergence Theorem
 - 4.8. Singularities
 - 4.9. Rotation and Curl

- 5. Multiple Integrals
 - 5.1. Basic Computation
 - 5.2. u-v Transformations; Jacobians
 - 5.3. Measurement of Volume, Mass, Density
 - 5.4. 3D Integrals
 - 5.5. Average Value
 - 5.6. Fubini's Theorem
- 6. Other Coordinate Systems
 - 6.1. Cylindrical Coordinates
 - 6.2. Spherical Coordinates
 - 6.3. Integration in Other Coordinate Systems
- 7. Gauss, Green, Stokes Theorems
 - 7.1. Green's Theorem
 - 7.2. Stokes' Theorem
 - 7.3. Divergence Theorem
 - 7.4. Generalized Fundamental Theorem of Calculus
 - 7.5. Sources, Sinks, and 3D Gauss's Formula
 - 7.6. Surface Integrals