# Vector Calculus Summer 2020 Online Course

Distance Calculus @ Roger Williams University offers Precalculus, Calculus I/II, Multivariable, Differential Equations, Linear Algebra, Probability Theory (Calculus-based Statistics) during every Summer term.Distance Calculus @ Roger Williams University operates 24/7/365 with open enrollment outside of the traditional academic calendar. We offer all of our courses during the Summer, Fall, Winter, before semesters traditionally start, after semesters start, during vacation weeks ... I think you get the idea :)

M

If you wish to complete a Vector Calculus course online, make sure you take this course from a

**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

The free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

There are more than a few actual colleges/universities offering Vector Calculus courses online. Be careful as you investigate these courses - they may not fit your needs for actual course instruction and timing. Most require you enroll and engage your course during their standard academic semesters. Most will have you use a publisher's "automated textbook" which is .... um .... well, if you like that kind of thing, then you have a few options over there at those schools.

Distance Calculus is all about real university-level calculus courses - that's all we do! We have been running these courses for 20+ years, so we know how to get students through the these courses fast fast fast!

Here is a video about earning real academic credits in Vector Calculus from Distance Calculus @ Roger Williams University:

## Earning Real Academic Credits for Calculus

## Applied Calculus vs Calculus I

## Distance Calculus - Student Reviews

*Date Posted: May 3, 2018*

Review by: James Holland

Courses Completed: Calculus I, Calculus II

Review: I needed to finish the Business Calculus course very very very fast before my MBA degree at Wharton started. With the AWESOME help of Diane, I finished the course in about 3 weeks, allowing me to start Wharton on time. Thanks Diane!

Transferred Credits to: Wharton School of Business, University of Pennsylvania

*Date Posted: Jul 25, 2020*

Review by: Michael Linton

Student Email: mdl264@cornell.edu

Courses Completed: Calculus I

Review: Amazing professor, extremely helpful and graded assignments quickly. To any Cornellians out there, this is the Calculus Course to take in Summer to fulfill your reqs! I would definitely take more Calculus Classes this way in the future!

Transferred Credits to: Cornell University

*Date Posted: Sep 20, 2020*

Review by: Genevieve P.

Courses Completed: Applied Calculus

Review: I found out from my grad school after being accepted that I needed a Calculus course before starting their MBA program. I had less than 6 weeks to do it (and as a non-STEM undergrad no less). The video lectures were informative, the pre-calc refresher was great to get re-conditioned, and the asynchronous format worked so well as I did this at night/weekends after work. I completed it in 4 weeks. Professor Curtis was extremely responsive, graded assignments quickly, and a supportive guide providing constructive feedback to me to excel at the assignments. I highly recommend this course for those who need a pre-req in a hurry or like learning on their own schedule. Thanks, Distance Calculus and Professor Curtis!

Transferred Credits to: Massachusetts Institute of Technology (MIT)

## Distance Calculus - Curriculum Exploration

### VC.04 - Trajectories

- V4: VC.04 - Trajectories:
- V4.1: VC.04 - Basics
- V4.1.a: VC.04.B1: Vector fields and their trajectories
- V4.1.b: VC.04.B2: Flow of vector fields along curves; flow of vector fields across curves: Visual inspection
- V4.1.c: VC.04.B3: Flow of vector fields along curves; flow of vector fields across curves
- V4.2: VC.04 - Tutorials
- V4.2.a: VC.04.T1: Flow across and flow along: Visual inspection
- V4.2.b: VC.04.T2: Differential equations and and their associated vector fields
- V4.2.c: VC.04.T3: Flow across and along a curve and the sign of the dot product
- V4.2.d: VC.04.T4: The 2D electric field
- V4.2.e: VC.04.T5: Troubleshooting plots of vector fields
- V4.3: VC.04 - Give It a Try
- V4.3.a: VC.04.G1: Looking for sinks (drains)
- V4.3.b: VC.04.G2: Flow along and flow across
- V4.3.c: VC.04.G3: Normals, tangents and dot plots
- V4.3.d: VC.04.G4: The most important vector field of them all: The gradient field
- V4.3.e: VC.04.G5: Differential equations and their associated vector fields
- V4.3.f: VC.04.G6: Trajectories: Can they cross?
- V4.3.g: VC.04.G7: Drifting along with a tumbleweed
- V4.3.h: VC.04.G8: Logistic harvesting revisited
- V4.3.i: VC.04.G9: Water flow with spigots and drains
- V4.3.j: VC.04.G10: 2D Electrical fields
- V4.3.k: VC.04.G11: Gradient fields for max-min, Hamiltonian fields for level curves, and implicitly defined functions
- V4.4: VC.04 - Literacy