Calculus 3 Accredited Online Course

# Winter 2020 Calculus 3 - Vector Calculus Accredited Calculus Academic Credits

Winter 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: May 3, 2020*

Review by: Andris H.

Courses Completed: Applied Calculus

Review: I found out from my MBA program that I needed to finish calculus before starting the MBA. They told me 3 weeks before term started! I was able to finish Applied Calculus from Distance Calculus. Definitely a great class. Thanks Distance Calculus!

Transferred Credits to: SUNY Stony Brook

*Date Posted: Jan 19, 2020*

Review by: Dan P.

Courses Completed: Calculus I, Calculus II

Review: I found the courses to be informative, enjoyable, and most importantly, effective in helping me learn the concepts of calculus. My math skills were always very weak, and I had a great deal of difficulty passing my undergrad math courses. The pace of a traditional classroom setting was just too quick for the concepts to really sink in. With Distance Calculus, I had courses that were taught with the full rigor of an on-campus class, but where I could take my time and really learn the material...all while having access to top-tier instructional help for real math professors and assistants. DC gave me the tools and the confidence I needed, so after successfully passing my DC courses, I moved on and completed a master's degree in CS.

*Date Posted: Feb 23, 2020*

Review by: Carl Conners

Courses Completed: Multivariable Calculus, Differential Equations, Linear Algebra

Review: After a really rough first year of calculus, I completed all of the second year calculus courses with Distance Calculus. It was like night and day the difference. My first year was so boring and monotonous. Multivariable Calculus, Differential Equations, and Linear Algebra through Distance Calculus were just so much different - so not boring at all. I thoroughly enjoyed these courses. So engaging.

Transferred Credits to: Michigan State University

## Distance Calculus - Curriculum Exploration

### VC.03 - Gradient

- V3: VC.03 - Gradient:
- V3.1: VC.03 - Basics
- V3.1.a: VC.03.B1: The gradient and the chain rule
- V3.1.b: VC.03.B2: Level curves, level surfaces and the gradient as normal vector
- V3.1.c: VC.03.B3: The gradient points in the direction of greatest initial increase
- V3.1.d: VC.03.B4: Using linearizations to help to explain the chain rule
- V3.2: VC.03 - Tutorials
- V3.2.a: VC.03.T1: The total differential
- V3.2.b: VC.03.T2: What's the chain rule good for?
- V3.2.c: VC.03.T3: The gradient and maximization and minimization
- V3.2.d: VC.03.T4: Eye-balling a function for max-min
- V3.2.e: VC.03.T5: Data fit
- V3.2.f: VC.03.T6: Lagrange's method for constrained maximization and minimization
- V3.3: VC.03 - Give It a Try
- V3.3.a: VC.03.G1: The gradient points in the direction of greatest initial increase
- V3.3.b: VC.03.G2: The gradient is perpendicular to the level curves and surfaces
- V3.3.c: VC.03.G3: The heat seeker
- V3.3.d: VC.03.G4: Doing 'em by hand
- V3.3.e: VC.03.G5: The highest crests and the deepest dips
- V3.3.f: VC.03.G6: Closest points, gradients and Lagrange's method
- V3.3.g: VC.03.G7: The Cobb-Douglas manufacturing model for industrial engineering
- V3.3.h: VC.03.G8: Data Fit in two variables: Plucking a guitar string
- V3.3.i: VC.03.G9: Linearizations and total differentials
- V3.3.j: VC.03.G10: Keeping track of constituent costs
- V3.3.k: VC.03.G11: The great pretender
- V3.3.l: VC.01.G1-A: Another Help Movie
- V3.3.m: VC.01.G1-B: Another Help Movie
- V3.3.n: VC.01.G1-C: Yet Another Help Movie
- V3.3.o: VC.03.G2.c Hint
- V3.4: VC.03 - Literacy
- V3.5: VC.03 - Revisited
- V3.5.a: VC.03.B1 - Revisited
- V3.5.b: VC.03.B2 - Revisited
- V3.5.c: VC.03.B3 - Revisited
- V3.5.d: VC.03.T1 - Revisited
- V3.5.e: VC.03.T2 - Revisited
- V3.5.f: VC.03.T3 - Revisited
- V3.5.g: VC.03.T4 - Revisited
- V3.5.h: VC.03.T6 - Revisited
- V3.5.i: VC.03.G1.b.i - Revisited
- V3.5.j: VC.03.G1.d.i - Revisited
- V3.5.k: VC.03.G1.d.ii - Revisited
- V3.5.l: VC.03.G2.c - Revisited