Engineering Calculus Online Course For Credit, Start Immediately

# Winter 2020 Enroll Now, Start Today - Engineering Calculus Academic Credits

Winter 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: May 3, 2020*

Review by: Andris H.

Courses Completed: Applied Calculus

Review: I found out from my MBA program that I needed to finish calculus before starting the MBA. They told me 3 weeks before term started! I was able to finish Applied Calculus from Distance Calculus. Definitely a great class. Thanks Distance Calculus!

Transferred Credits to: SUNY Stony Brook

*Date Posted: Aug 16, 2020*

Review by: Jennifer S.

Courses Completed: Calculus I

Review: The course was intense and required a lot of hard work. Professors ready available to assist when needed. Professors presented and explained materials/course work in detail and provided explanations and resources.

Transferred Credits to: University of New Haven, West Haven, CT

*Date Posted: Jan 12, 2020*

Review by: Brian Finley

Courses Completed: Calculus II

Review: I took Calculus II through Distance Calculus and can't recommend it enough. Being able to take the course at my own pace while I was working full time was tremendously helpful, especially since I hadn't taken a math course for 5 years prior. The instruction was excellent and the software they used to teach the course was intuitive and facilitated the learning process very well. This calc II class enabled me to take multivariable calc, linear algebra, and real analysis at Harvard University's extension school, which ultimately qualified me for the economics PhD program that I will graduate from next year. 8 years on, I'm still grateful to Professor Curtis and Distance Calculus.

## Distance Calculus - Curriculum Exploration

### 1.03: Growth Rates

- M3: 1.03: Growth Rates:
- M3.1: 1.03 - Basics
- M3.1.a: 1.03.B1: Instantaneous growth rates
- M3.1.b: 1.03.B2: Instantaneous Growth Rate of Power Functions
- M3.1.c: 1.03.B3: The Instantaneous Growth Rate of Trig Functions
- M3.1.d: 1.03.B4: The Instantaneous Growth Rate of Exponential and Log Functions
- M3.2: 1.03 - Tutorials
- M3.2.a: 1.03.T1: Average growth rate versus instantaneous growth rate
- M3.2.b: 1.03.T2: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.2.c: 1.03.T3: Spread of disease
- M3.2.d: 1.03.T4: Instantaneous growth rates in context
- M3.3: 1.03 - GiveItATry
- M3.3.a: 1.03.G1: Relating f(x) and f'(x)
- M3.3.b: 1.03.G2: Explaining LiveMath Derivative Output
- M3.3.c: 1.03.G3: Approximation of the instantaneous growth rate f'(x) by average growth rates
- M3.3.d: 1.03.G4: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.3.e: 1.03.G5: Graphics action
- M3.3.f: 1.03.G6: Up and down, maximum and minimum
- M3.3.g: 1.03.G7: Spread of disease
- M3.3.h: 1.03.G8: Average growth rate versus instantaneous growth rate
- M3.3.i: 1.03.G9: Why folks study the instantaneous growth rate instead of instantaneous growth
- M3.4: 1.03 - Literacy
- M3.5: 1.03 - Revisited