Vector Calculus Online Accredited

# Winter 2020 Vector Calculus: Multivariable Calculus Online Accredited Course

Winter 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: Mar 17, 2020*

Review by: Rebecca M.

Courses Completed: Calculus II, Multivariable Calculus

Review: Fantastic courses! I barely made it through Cal 1, and halfway through Cal 2 I found this program. I took Cal 2 and then Multivariable and I just loved it! SOOOOOOO much better than a classroom+textbook class. I highly recommend!

Transferred Credits to: Tulane University

*Date Posted: Sep 6, 2020*

Review by: Mark L.

Courses Completed: Applied Calculus

Review: Great course. Because of this class I was able to meet the entry requirements for my EMBA program on a tight time window in addition to sharpening math skills from classes taken over 15 years ago!

Transferred Credits to: MIT

*Date Posted: Apr 10, 2020*

Review by: Benjamin T.

Courses Completed: Calculus I

Review: This course provided an excellent chance to learn about Calculus...again. I took calculus in high school, but I learned so much more with this course! It does take a good amount of time to do all the lessons, so definitely keep on top of them, but all the exercises helped me to really understand the material. And the nice thing is you can do it on your own time at home.

Transferred Credits to: Western University of Health Sciences: College of Optometry

## Distance Calculus - Curriculum Exploration

### VC.06 - Sources

- V6: VC.06 - Sources:
- V6.1: VC.06 - Sources - Basics
- V6.1.a: VC.06.B1: Using a 2D integral to measure flow across closed curves
- V6.1.b: VC.06.B2: Sources, sinks, and the divergence of a vector field
- V6.1.c: VC.06.B3: Flow-across-the-curve measurements in the presence of singularities
- V6.2: VC.06 - Sources - Tutorials
- V6.2.a: VC.06.T1: The pleasure of calculating path integrals when mixed partials equation = 0
- V6.2.b: VC.06.T2: Using a 2D integral to measure flow along closed curves
- V6.2.c: VC.06.T3: Rotation (swirl) of a vector field
- V6.2.d: VC.06.T4: Summary of main ideas.
- V6.3: VC.06 - Sources - Give It a Try
- V6.3.a: VC.06.G1: Sources, sinks and swirls
- V6.3.b: VC.06.G2: Singularity sources, sinks and swirls
- V6.3.c: VC.06.G3: Agree or disagree
- V6.3.d: VC.06.G4: Flow calculations in the presence of singularities
- V6.3.e: VC.06.G5: 2D electric fields, dipole fields, and Gauss's law in physics
- V6.3.f: VC.06.G6: The Laplacian and steady-state heat
- V6.3.g: VC.06.G7: Calculating path integrals in the presence of singularities
- V6.3.h: VC.06.G8: Water and electricity
- V6.3.i: VC.06.G9: Is parallel flow always irrotational?
- V6.3.j: VC.06.G10: Spin fields
- V6.4: VC.06 - Sources - Literacy