# Winter Session 2020 Calculus 4 - Multivariable Calculus - Vector Calculus Online Accredited Course

Winter Session 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: Aug 16, 2020*

Review by: Jennifer S.

Courses Completed: Calculus I

Review: The course was intense and required a lot of hard work. Professors ready available to assist when needed. Professors presented and explained materials/course work in detail and provided explanations and resources.

Transferred Credits to: University of New Haven, West Haven, CT

*Date Posted: Aug 23, 2020*

Review by: Sean Metzger

Student Email: seanmetzger78@gmail.com

Courses Completed: Differential Equations

Review: A lifesaver. When I found out I needed a course done in the last weeks of summer I thought there was no way i'd find one available, but this let me complete the course as quickly as I needed to while still mastering the topics. Professor always got back to me very quickly and got my assignments back to me the next day or day of. Can't recommend this course enough for students in a hurry or who just want to learn at their own pace.

Transferred Credits to: Missouri University of Science and Technology

*Date Posted: Jan 19, 2020*

Review by: William Williams

Student Email: wf.williamster@gmail.com

Courses Completed: Linear Algebra, Probability Theory

Review: I have difficulty learning calculus based math, akin to dyslexia when examining the symbolic forms, equations, definitions, and problems. Mathematica based calculus courses allowed me to continue with my studies because of the option of seeing the math expressed as a programming language for which I have no difficulty in interpreting visually and the immediate feedback of graphical representations of functions, equations, or data makes a huge impact on understanding. Mathematica based calculus courses should be the default method of teaching Calculus everywhere.

Transferred Credits to: Thomas Edison State College

## Distance Calculus - Curriculum Exploration

### VC.04 - Trajectories

- V4: VC.04 - Trajectories:
- V4.1: VC.04 - Basics
- V4.1.a: VC.04.B1: Vector fields and their trajectories
- V4.1.b: VC.04.B2: Flow of vector fields along curves; flow of vector fields across curves: Visual inspection
- V4.1.c: VC.04.B3: Flow of vector fields along curves; flow of vector fields across curves
- V4.2: VC.04 - Tutorials
- V4.2.a: VC.04.T1: Flow across and flow along: Visual inspection
- V4.2.b: VC.04.T2: Differential equations and and their associated vector fields
- V4.2.c: VC.04.T3: Flow across and along a curve and the sign of the dot product
- V4.2.d: VC.04.T4: The 2D electric field
- V4.2.e: VC.04.T5: Troubleshooting plots of vector fields
- V4.3: VC.04 - Give It a Try
- V4.3.a: VC.04.G1: Looking for sinks (drains)
- V4.3.b: VC.04.G2: Flow along and flow across
- V4.3.c: VC.04.G3: Normals, tangents and dot plots
- V4.3.d: VC.04.G4: The most important vector field of them all: The gradient field
- V4.3.e: VC.04.G5: Differential equations and their associated vector fields
- V4.3.f: VC.04.G6: Trajectories: Can they cross?
- V4.3.g: VC.04.G7: Drifting along with a tumbleweed
- V4.3.h: VC.04.G8: Logistic harvesting revisited
- V4.3.i: VC.04.G9: Water flow with spigots and drains
- V4.3.j: VC.04.G10: 2D Electrical fields
- V4.3.k: VC.04.G11: Gradient fields for max-min, Hamiltonian fields for level curves, and implicitly defined functions
- V4.4: VC.04 - Literacy