# Winter Session 2020 Enroll Now, Start Today - MBA Calculus Courses Academic Credits

Winter Session 2020 @ Roger Williams UniversityMBA students seeking to fulfill their calculus requirement may do so via our Applied Calculus - Math 207 - 3 credit course - which is very popular with MBA-bound students.

Even if your MBA school does not require Calculus, your enrollment application to your MBA school will look stronger with more Calculus courses on your academic transcripts.

For most MBA students, a single course like Applied Calculus will suffice.

For those students planning to go to very strongly mathematical MBA program (e.g. Sloan School of Management at MIT), you will actually need to take the ENTIRE Engineering Calculus sequence!

Please explore these links below that describe more about the types of calculus courses you may wish to take before applying for MBA school, or other graduate programs that historically require Calculus and/or more mathematics prerequisites.

Winter Session 2020 Distance Calculus @ Roger Williams University offers all of the main lower-division university-level calculus courses.

- Math 136 - Precalculus - 4 credits
- Math 207 - Applied Calculus - 3 credits
- Math 213 - Calculus I - 4 credits
- Math 214 - Calculus II - 4 credits
- Math 351 - Multivariable Calculus - 4 credits
- Math 317 - Differential Equations - 3 credits
- Math 331 - Linear Algebra - 3 credits
- Math 315 - Probability Theory - 3 credits

## Distance Calculus - Student Reviews

*Date Posted: Feb 23, 2020*

Review by: Carl Conners

Courses Completed: Multivariable Calculus, Differential Equations, Linear Algebra

Review: After a really rough first year of calculus, I completed all of the second year calculus courses with Distance Calculus. It was like night and day the difference. My first year was so boring and monotonous. Multivariable Calculus, Differential Equations, and Linear Algebra through Distance Calculus were just so much different - so not boring at all. I thoroughly enjoyed these courses. So engaging.

Transferred Credits to: Michigan State University

*Date Posted: May 21, 2020*

Review by: Chester F.

Courses Completed: Calculus I, Calculus II

Review: I did not enjoy Calculus I at my school. I retook Calculus I, and then Calculus II, over the summer via Distance Calculus and it was awesome. I started my sophomore year back on track and ready for my physics classes. I struggled with the MathLive software but I guess it was alright.

Transferred Credits to: University of North Carolina

*Date Posted: Apr 6, 2020*

Review by: Paul Simmons

Courses Completed: Multivariable Calculus, Differential Equations

Review: I took Multivariable and Diff Eq during the summer. The DiffEq course was awesome - very useful for my physics and engineering course. I was unsure about Mathematica at first, but I got the hang of it quickly. Thank you Distance Calculus!

Transferred Credits to: University of Oregon

## Distance Calculus - Curriculum Exploration

### 1.07: Races

- M7: 1.07: Races:
- M7.1: 1.07 - Basics
- M7.1.a: 1.07.B1: The Race Track Principle
- M7.1.b: 1.07.B2: The Race Track Principle and differential equations
- M7.1.c: 1.07.B3: The Race Track Principle and Euler's method of faking the plot of the solution of a differential equation
- M7.1.d: 1.07.B4: Tangent lines and the Race Track Principle
- M7.2: 1.07 - Tutorials
- M7.2.a: 1.07.T1: Using Euler's method to fake the plot of f(x) given f ' (x) and one value of f(x)
- M7.2.b: 1.07.T2: Using the Race Track Principle to help to estimate roundoff error
- M7.2.c: 1.07.T3: If f''(x) is always positive then tangent lines run below the curve
- M7.3: 1.07 - Give It a Try
- M7.3.a: 1.07.G1: Versions of the Race Track Principle
- M7.3.b: 1.07.G2: Running Euler's faker
- M7.3.c: 1.07.G3: The Race Track Principle and differential equations
- M7.3.d: 1.07.G4: The error function Erf(x)
- M7.3.e: 1.07.G5: Round off
- M7.3.f: 1.07.G6: Calculating accurate values of ln(x)
- M7.3.g: 1.07.G7: Calculating accurate values of e^x
- M7.3.h: 1.07.G8: Euler's faker and the second derivative
- M7.3.i: 1.07.G9: Inequalities
- M7.3.j: 1.07.G10: The Law of the Mean
- M7.3.k: 1.07.G11: If f''(x) is never positive then tangent lines run above the curve; At points of inflection, the tangent line crosses the curve
- M7.4: 1.07 - Literacy