Upper Division Mathematics: Computational Differential Geometry


ENROLLMENT STARTS Spring 2026





Course Title: Computational Differential Geometry
Catalog Number: DMAT 451
Credits: 4 Semester Credit Hours
Syllabus PDF: PDF Syllabus for Computational Differential Geometry
Delivery: Fully Online, Asynchronous, Self-Paced
Click Here to Enroll in DMAT 451 - Computational Differential Geometry


Roger Williams University Course Catalog Listing: DMAT 451 - Computational Differential Geometry

Course: DMAT 451

Course Title: Computational Differential Geometry

Transcript Course Title (30 Characters Max:): Comp Differential Geometry

Course Description: A first course in differential geometry from a computational and graphical standpoint. Topics include a comprehensive study of curves and surfaces with emphasis on exploring a catalog of named geometrical objects, curvature and other metrics, orientable, non-orientable, ruled, and minimal surface, culminating with an introduction to the Gauss-Bonnet Theorem. [4 Semester Credits]

Prerequisite: Successful completion (C- or higher) of Multivariable Calculus or equivalent, or consent of instructor.

E-Textbook: Differential Geometry of Curves and Surfaces using Mathematica, 3rd Edition, by Gray et al.

Software: Mathematica

PDF Course Syllabus: Detailed Course Syllabus in PDF for DMAT 451 - Computational Differential Geometry


DMAT 451 - Computational Differential Geometry - Learning Outcomes

  • 1. To use computer graphing tools to visualize 2D and 3D curves and surfaces
  • 2. To understand and compute various metrics about parametric and non-parametric curves and surfaces
  • 3. To understand and compute the key concept of curvature, and understand its relationship to derivatives and differential equations
  • 4. To understand the role of motions in geometry
  • 5. To understand and compute the Frenet frames for curves
  • 6. To understand and compute the concept of the derivative for vector fields
  • 7. To understand and compute the local Gauss map for surfaces
  • 8. To understand and compute the concept of orientability of surfaces
  • 9. To understand and compute Gaussian and Mean curvature
  • 10. To understand and compute Ruled and Minimal Surfaces
  • 11. To be introduced to the Gauss-Bonnet theorem


DMAT 451 - Computational Differential Geometry - Syllabus of Topics

1.	Getting Started
	1.1	Email and Chat
	1.2	Learning About the Course
	1.3	Required Hardware
	1.4	Software Fundamentals

2.	Curves
	2.1	Euclidean Spaces
	2.2	2D and 3D Parametric Curves
	2.3	Arclength
	2.4	Curvature vs. Derivative
	2.5	Angles
	2.6	Catalog of Famous Curves

3.	Alternative Ways of Plotting Curves
	3.1	Implicit Curves
	3.2	Contour Plots
	3.3	Polar Coordinates
	3.4	New Curves from Old

4.	Solving Curvature Equations
	4.1	Euclidean Motions
	4.2	Intrinsic Equations
	4.3	Assigned Curvature

5.	Global Properties of Plane Curves
	5.1	Total Signed Curvature
	5.2	Turning Numbers
	5.3	Rotation Index
	5.4	Convexity
	5.5	Constant Width
	5.6	Support Functions

6.	Space Curves
	6.1	Tangent, Normal, Binormal Frames
	6.2	Curvature and Torsion
	6.3	Frenet Formulas
	6.4	Arbitrary Speed Curves
	6.5	Tubes and Tori

7.	Fundamental Theorem of Space Curves
	7.1	Assigned Curvature and Torsion
	7.2	Contact
	7.3	Curves That Lie on a Sphere
	7.4	Curves of Constant Slope

8.	Calculus of Euclidean Space
	8.1	Tangent Vectors and Directional Derivatives
	8.2	Tangential Maps
	8.3	Vector Fields
	8.4	Derivatives of Vector Fields

9.	Surfaces in Euclidean Space
	9.1	Patches
	9.2	Local Gauss Map
	9.3	Regular Surfaces
	9.4	Level Surfaces
	9.5	Catalog of Famous Surfaces	

10.	Non-Orientable Surfaces
	10.1	Orientability
	10.2	Mobius Strip and Klein Bottle
	10.3	Projective Planes

11.	Surface Metrics
	11.1	Distance
	11.2	Isometries
	11.3	Conformal Maps
	11.4	Gaussian and Mean Curvature
	11.5	Non-Parametrically-Defined Surfaces

12.	Ruled and Other Surfaces
	12.1	Examples
	12.2	Curvature
	12.3	Surfaces of Revolution
	12.4	Examples of Minimal Surfaces





Distance Calculus - Student Reviews

Andris H.★★★★★
Posted: May 3, 2020
Courses Completed: Applied Calculus
I found out from my MBA program that I needed to finish calculus before starting the MBA. They told me 3 weeks before term started! I was able to finish Applied Calculus from Distance Calculus. Definitely a great class. Thanks Distance Calculus!
Transferred Credits To: SUNY Stony Brook
Anonymous★★★★★
Posted: Jan 12, 2020
Courses Completed: Calculus I
This course is amazing! I took it as a requirement for admission to an MBA program, and couldn't have been happier with the quality and rigor of the course. I previously took calculus two times (at a public high school and then a large public university commonly cited as a "public ivy"), this course was by far the best and *finally* made the concepts click. Previously I had no idea what was going on because terrible PhD students were teaching the course and saying stuff like "a derivative is the slope of a tangent line" - ??? but what does that mean ???, but the instructors in the Shorter University course explain everything in ways where it FINALLY made sense (e.g., "imagine a roller coaster hitting the top of a hill, there's a moment where it shifts momentum and you're not accelerating or decelerating, that's what a 0 rate of change is - that's when the derivative would be zero"). They explain everything in multiple ways and relate it to other concepts. It all made perfect sense when I finally had a good instructor. Really recommend this class
Transferred Credits To: The Wharton School, UPenn
Teddy M.★★★★
Posted: Feb 28, 2020
Courses Completed: Precalculus, Calculus I
Pros: once you get going, you can go really fast. The visual textbook is pretty cool. The instructors were very responsive.
Cons: the movies are great, but the software crashes more than it should. Sometimes it is just a hassle doing things in the software instead of on paper, but once I got used to the software, it was ok.
Transferred Credits To: Texas Christian University
Henry F.★★★★★
Posted: Dec 18, 2025
Courses Completed: Differential Equations
Transferred Credits To: Saint Joseph High School
John ★★★★★
Posted: Nov 20, 2025
Courses Completed: Precalculus, Applied Calculus
Great course. Professor Curtis and the TAs graded quickly and gave really helpful feedback that made the class feel smooth and manageable. Definitely recommend it.
Transferred Credits To: Binghamton University (School of Managment)
Trevor★★★★★
Posted: Jun 19, 2025
Courses Completed: Calculus I
POSITIVES:
One of the best math classes I have ever taken. The lessons made the failures of my previous professors very apparent. In a few short minutes, things that I used to struggle with just clicked. This professor is top notch and really wants you to understand how to use the material.
NEGATIVES:
The SOFTWARE is extremely frustrating. Even after taking the time to learn, there are countless glitches. You learn to work around them, and overall, the software makes the math convenient, but its failures are sorely felt throughout the course. Make sure you save often as it crashes regularly, especially with graphs.
The assignments are easy enough but some of them don't line up with the taught material. Be prepared to do some of your own independent research to get a deeper understanding of why things are the way they are.
Transferred Credits To: US Army

Frequently Asked Questions

Yes, you need to have completed Multivariable Calculus with a grade of C- or higher, and it is a very good idea if you have completed the other Sophomore-level courses as well.

Yes, we will study a truly wonderful textbook entitled Differential Geometry of Curves and Surfaces using Mathematica, and almost all of the coursework will be in Mathematica.

Yes, Differential Geometry is a challenging course, usually reserved for the junior or senior undergraduate university level. By using Mathematica, the visualization of the subject will be made easier, but the hard mathematics are the same difficulty.

No, Differential Geometry is a junior or senior undergraduate university level course. It is a good preparation course for Real Analysis.

You need to ask your university that question! See the instructions on the Transferring Credits page.

Video Player