# Summer 2020 Calculus III - Vector Calculus Accredited Calculus Academic Credits

Summer 2020 @ Roger Williams UniversityIf you wish to complete a Calculus III course online, make sure you take this course from a

**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

The free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

There are more than a few actual colleges/universities offering Calculus III - Vector Calculus courses online. Be careful as you investigate these courses - they may not fit your needs for actual course instruction and timing. Most require you enroll and engage your course during their standard academic semesters. Most will have you use a publisher's "automated textbook" which is .... um .... well, if you like that kind of thing, then you have a few options over there at those schools.

Summer 2020 Distance Calculus is all about real university-level calculus courses - that's all we do! We have been running these courses for 20+ years, so we know how to get students through the these courses fast fast fast!

Here is a video about earning real academic credits in Calculus III from Summer 2020 Distance Calculus @ Roger Williams University:

## Earning Real Academic Credits for Calculus

## Applied Calculus vs Calculus I

## Distance Calculus - Student Reviews

*Date Posted: Jan 13, 2020*

Review by: Anonymous

Courses Completed: Calculus II

Review: This is the most interactive and productive online course I have ever taken. I had taken calculus before but never understood some of the underlying concepts until I took this course. If you want to really learn calculus in a way that will stay with you for the rest of your life, take this course.

Transferred Credits to: The college of New Jersey

*Date Posted: Feb 23, 2020*

Review by: Carl Conners

Courses Completed: Multivariable Calculus, Differential Equations, Linear Algebra

Review: After a really rough first year of calculus, I completed all of the second year calculus courses with Distance Calculus. It was like night and day the difference. My first year was so boring and monotonous. Multivariable Calculus, Differential Equations, and Linear Algebra through Distance Calculus were just so much different - so not boring at all. I thoroughly enjoyed these courses. So engaging.

Transferred Credits to: Michigan State University

*Date Posted: Feb 19, 2020*

Review by: Rebecca Johnson

Courses Completed: Applied Calculus

Review: I took the Business Calculus course from Distance Calculus in 2013. I was admitted to my MBA program, but then they told me I needed to take Calculus before starting the program. I finished the Business Calculus course in about 3 weeks in August before my program started. Not the most fun thing to do over the summer, but at least I got it done. Thanks Diane and Distance Calculus team!

Transferred Credits to: Kellogg MBA Program

## Distance Calculus - Curriculum Exploration

### VC.06 - Sources

- V6: VC.06 - Sources:
- V6.1: VC.06 - Sources - Basics
- V6.1.a: VC.06.B1: Using a 2D integral to measure flow across closed curves
- V6.1.b: VC.06.B2: Sources, sinks, and the divergence of a vector field
- V6.1.c: VC.06.B3: Flow-across-the-curve measurements in the presence of singularities
- V6.2: VC.06 - Sources - Tutorials
- V6.2.a: VC.06.T1: The pleasure of calculating path integrals when mixed partials equation = 0
- V6.2.b: VC.06.T2: Using a 2D integral to measure flow along closed curves
- V6.2.c: VC.06.T3: Rotation (swirl) of a vector field
- V6.2.d: VC.06.T4: Summary of main ideas.
- V6.3: VC.06 - Sources - Give It a Try
- V6.3.a: VC.06.G1: Sources, sinks and swirls
- V6.3.b: VC.06.G2: Singularity sources, sinks and swirls
- V6.3.c: VC.06.G3: Agree or disagree
- V6.3.d: VC.06.G4: Flow calculations in the presence of singularities
- V6.3.e: VC.06.G5: 2D electric fields, dipole fields, and Gauss's law in physics
- V6.3.f: VC.06.G6: The Laplacian and steady-state heat
- V6.3.g: VC.06.G7: Calculating path integrals in the presence of singularities
- V6.3.h: VC.06.G8: Water and electricity
- V6.3.i: VC.06.G9: Is parallel flow always irrotational?
- V6.3.j: VC.06.G10: Spin fields
- V6.4: VC.06 - Sources - Literacy