# Summer 2020 MBA Calculus Courses - Distance Calculus @ Roger Williams University Accredited Calculus Academic Credits

Summer 2020 @ Roger Williams UniversityIf you wish to complete a MBA Calculus Courses course online, make sure you take this course from a

**regionally accredited college/university**so that the credits you earn from this course will actually transfer to your home college/university.

The free courses available from the MOOCs (Massive Open Online Courses) like edX, Coursera, Udacity, Khan Academy, MIT Open Courseware, etc. are really excellent courses, but they do

**NOT**result in transferrable academic credits from an accredited university!

There are more than a few actual colleges/universities offering MBA Calculus Courses - Summer 2020 Distance Calculus @ Roger Williams University courses online. Be careful as you investigate these courses - they may not fit your needs for actual course instruction and timing. Most require you enroll and engage your course during their standard academic semesters. Most will have you use a publisher's "automated textbook" which is .... um .... well, if you like that kind of thing, then you have a few options over there at those schools.

Summer 2020 Distance Calculus is all about real university-level calculus courses - that's all we do! We have been running these courses for 20+ years, so we know how to get students through the these courses fast fast fast!

Here is a video about earning real academic credits in MBA Calculus Courses from Summer 2020 Distance Calculus @ Roger Williams University:

## Earning Real Academic Credits for Calculus

## Applied Calculus vs Calculus I

## Distance Calculus - Student Reviews

*Date Posted: Aug 23, 2020*

Review by: Sean Metzger

Student Email: seanmetzger78@gmail.com

Courses Completed: Differential Equations

Review: A lifesaver. When I found out I needed a course done in the last weeks of summer I thought there was no way i'd find one available, but this let me complete the course as quickly as I needed to while still mastering the topics. Professor always got back to me very quickly and got my assignments back to me the next day or day of. Can't recommend this course enough for students in a hurry or who just want to learn at their own pace.

Transferred Credits to: Missouri University of Science and Technology

*Date Posted: Feb 25, 2020*

Review by: Jessica M.

Courses Completed: Applied Calculus

Review: I highly recommend this course. I started the Kennedy School at Harvard with a last-minute admission, but my application required the Liberal Arts calculus course, so I had to finish the course in 3 weeks. Diane was an awesome instructor! The class was surprisingly interesting. If you need to take calculus fast, this is the program to use.

Transferred Credits to: Kennedy School of Government, Harvard University

*Date Posted: Feb 28, 2020*

Review by: Teddy M.

Courses Completed: Precalculus, Calculus I

Review: Pros: once you get going, you can go really fast. The visual textbook is pretty cool. The instructors were very responsive. Cons: the movies are great, but the software crashes more than it should. Sometimes it is just a hassle doing things in the software instead of on paper, but once I got used to the software, it was ok.

Transferred Credits to: Texas Christian University

## Distance Calculus - Curriculum Exploration

### 1.03: Growth Rates

- M3: 1.03: Growth Rates:
- M3.1: 1.03 - Basics
- M3.1.a: 1.03.B1: Instantaneous growth rates
- M3.1.b: 1.03.B2: Instantaneous Growth Rate of Power Functions
- M3.1.c: 1.03.B3: The Instantaneous Growth Rate of Trig Functions
- M3.1.d: 1.03.B4: The Instantaneous Growth Rate of Exponential and Log Functions
- M3.2: 1.03 - Tutorials
- M3.2.a: 1.03.T1: Average growth rate versus instantaneous growth rate
- M3.2.b: 1.03.T2: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.2.c: 1.03.T3: Spread of disease
- M3.2.d: 1.03.T4: Instantaneous growth rates in context
- M3.3: 1.03 - GiveItATry
- M3.3.a: 1.03.G1: Relating f(x) and f'(x)
- M3.3.b: 1.03.G2: Explaining LiveMath Derivative Output
- M3.3.c: 1.03.G3: Approximation of the instantaneous growth rate f'(x) by average growth rates
- M3.3.d: 1.03.G4: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.3.e: 1.03.G5: Graphics action
- M3.3.f: 1.03.G6: Up and down, maximum and minimum
- M3.3.g: 1.03.G7: Spread of disease
- M3.3.h: 1.03.G8: Average growth rate versus instantaneous growth rate
- M3.3.i: 1.03.G9: Why folks study the instantaneous growth rate instead of instantaneous growth
- M3.4: 1.03 - Literacy
- M3.5: 1.03 - Revisited