# Vector Calculus and Linear Algebra for Advanced High School Students

Many rockstar high school students will finish Calculus AB (Calculus I) and Calculus BC (Calculus II) during their junior or senior year of high school, and look to take more mathematics courses during high school. Yet, in most high schools, Calculus II is the highest course offered.Some advanced students may finish Calculus I (AB) and Calculus II (BC) during their junior year of high school. For these students, enrolling in Linear Algebra, and perhaps Multivariable Calculus and Differential Equations, via Distance Calculus @ Roger Williams University is an excellent way to FINISH your lower division mathematics courses even before you step foot onto your new college/university campus the following Fall semester!

If you finish these AP Calculus courses during your senior year, then one option to get ahead with your academic plan is to complete the next few courses: Linear Algebra, Calculus 3 (Calculus III) - Multivariable Calculus, and perhaps even Differential Equations and/or Calculus-Based Statistics (Probability Theory) - during your senior year or during the summer before you start your new undergraduate university. Earning real collegiate academic credits for Linear Algebra and then transferring those credits to your new undergraduate college/university is an excellent way to start your new school with some advanced mathematics credits under your belt.

Here is a video about our Calculus 3 course via Distance Calculus @ Roger Williams University:

## Multivariable Calculus & High School

## Linear Algebra Course

## After AP Calculus for High School Students

## Distance Calculus - Student Reviews

*Date Posted: May 3, 2018*

Review by: James Holland

Courses Completed: Calculus I, Calculus II

Review: I needed to finish the Business Calculus course very very very fast before my MBA degree at Wharton started. With the AWESOME help of Diane, I finished the course in about 3 weeks, allowing me to start Wharton on time. Thanks Diane!

Transferred Credits to: Wharton School of Business, University of Pennsylvania

*Date Posted: Apr 29, 2020*

Review by: Harlan E.

Courses Completed: Calculus I, Calculus II

Review: I did not do well in AP Calculus during my senior year in high school. Instead of trying to cram for the AP exam, I decided to jump ship and go to Distance Calculus to complete Calculus I. This was awesome! I finished Calculus I in about 6 weeks, and then I kept going into Calculus II. I started as a freshman at UCLA with both Calculus I and II done!

Transferred Credits to: University of California, Los Angeles

*Date Posted: May 3, 2018*

Review by: James Holland

Courses Completed: Calculus I, Calculus II

Review: I needed to finish the Business Calculus course very very very fast before my MBA degree at Wharton started. With the AWESOME help of Diane, I finished the course in about 3 weeks, allowing me to start Wharton on time. Thanks Diane!

Transferred Credits to: Wharton School of Business, University of Pennsylvania

## Distance Calculus - Curriculum Exploration

### VC.06 - Sources

- V6: VC.06 - Sources:
- V6.1: VC.06 - Sources - Basics
- V6.1.a: VC.06.B1: Using a 2D integral to measure flow across closed curves
- V6.1.b: VC.06.B2: Sources, sinks, and the divergence of a vector field
- V6.1.c: VC.06.B3: Flow-across-the-curve measurements in the presence of singularities
- V6.2: VC.06 - Sources - Tutorials
- V6.2.a: VC.06.T1: The pleasure of calculating path integrals when mixed partials equation = 0
- V6.2.b: VC.06.T2: Using a 2D integral to measure flow along closed curves
- V6.2.c: VC.06.T3: Rotation (swirl) of a vector field
- V6.2.d: VC.06.T4: Summary of main ideas.
- V6.3: VC.06 - Sources - Give It a Try
- V6.3.a: VC.06.G1: Sources, sinks and swirls
- V6.3.b: VC.06.G2: Singularity sources, sinks and swirls
- V6.3.c: VC.06.G3: Agree or disagree
- V6.3.d: VC.06.G4: Flow calculations in the presence of singularities
- V6.3.e: VC.06.G5: 2D electric fields, dipole fields, and Gauss's law in physics
- V6.3.f: VC.06.G6: The Laplacian and steady-state heat
- V6.3.g: VC.06.G7: Calculating path integrals in the presence of singularities
- V6.3.h: VC.06.G8: Water and electricity
- V6.3.i: VC.06.G9: Is parallel flow always irrotational?
- V6.3.j: VC.06.G10: Spin fields
- V6.4: VC.06 - Sources - Literacy