# Course Information - Distance Calculus @ Roger Williams University Enroll Today, Finish Quickly - Calculus Academic Credits

Distance Calculus Courses course via Distance Calculus @ Roger Williams University starts whenever you are ready! Enroll today, start your course today, finish your course as quickly as your academic skills allow.For many students with strong academic skills and backgrounds, some courses can be finished in as quickly as a few weeks!

Or, take a more relaxed approach - you can take up to 1 year to finish your course.

Why stress out with due dates and course structures that are incompatable with your life and work schedule? Why force yourself to attend classroom lectures on a weekly basis when you can take your calculus course online on your timeline!

Here is a video about how FAST you can potentially complete your Calculus course from Distance Calculus @ Roger Williams University:

## Distance Calculus - Student Reviews

*Date Posted: Sep 20, 2020*

Review by: Genevieve P.

Courses Completed: Applied Calculus

Review: I found out from my grad school after being accepted that I needed a Calculus course before starting their MBA program. I had less than 6 weeks to do it (and as a non-STEM undergrad no less). The video lectures were informative, the pre-calc refresher was great to get re-conditioned, and the asynchronous format worked so well as I did this at night/weekends after work. I completed it in 4 weeks. Professor Curtis was extremely responsive, graded assignments quickly, and a supportive guide providing constructive feedback to me to excel at the assignments. I highly recommend this course for those who need a pre-req in a hurry or like learning on their own schedule. Thanks, Distance Calculus and Professor Curtis!

Transferred Credits to: Massachusetts Institute of Technology (MIT)

*Date Posted: Feb 28, 2020*

Review by: Teddy M.

Courses Completed: Precalculus, Calculus I

Review: Pros: once you get going, you can go really fast. The visual textbook is pretty cool. The instructors were very responsive. Cons: the movies are great, but the software crashes more than it should. Sometimes it is just a hassle doing things in the software instead of on paper, but once I got used to the software, it was ok.

Transferred Credits to: Texas Christian University

*Date Posted: Apr 29, 2020*

Review by: Harlan E.

Courses Completed: Calculus I, Calculus II

Review: I did not do well in AP Calculus during my senior year in high school. Instead of trying to cram for the AP exam, I decided to jump ship and go to Distance Calculus to complete Calculus I. This was awesome! I finished Calculus I in about 6 weeks, and then I kept going into Calculus II. I started as a freshman at UCLA with both Calculus I and II done!

Transferred Credits to: University of California, Los Angeles

## Distance Calculus - Curriculum Exploration

### 1.07: Races

- M7: 1.07: Races:
- M7.1: 1.07 - Basics
- M7.1.a: 1.07.B1: The Race Track Principle
- M7.1.b: 1.07.B2: The Race Track Principle and differential equations
- M7.1.c: 1.07.B3: The Race Track Principle and Euler's method of faking the plot of the solution of a differential equation
- M7.1.d: 1.07.B4: Tangent lines and the Race Track Principle
- M7.2: 1.07 - Tutorials
- M7.2.a: 1.07.T1: Using Euler's method to fake the plot of f(x) given f ' (x) and one value of f(x)
- M7.2.b: 1.07.T2: Using the Race Track Principle to help to estimate roundoff error
- M7.2.c: 1.07.T3: If f''(x) is always positive then tangent lines run below the curve
- M7.3: 1.07 - Give It a Try
- M7.3.a: 1.07.G1: Versions of the Race Track Principle
- M7.3.b: 1.07.G2: Running Euler's faker
- M7.3.c: 1.07.G3: The Race Track Principle and differential equations
- M7.3.d: 1.07.G4: The error function Erf(x)
- M7.3.e: 1.07.G5: Round off
- M7.3.f: 1.07.G6: Calculating accurate values of ln(x)
- M7.3.g: 1.07.G7: Calculating accurate values of e^x
- M7.3.h: 1.07.G8: Euler's faker and the second derivative
- M7.3.i: 1.07.G9: Inequalities
- M7.3.j: 1.07.G10: The Law of the Mean
- M7.3.k: 1.07.G11: If f''(x) is never positive then tangent lines run above the curve; At points of inflection, the tangent line crosses the curve
- M7.4: 1.07 - Literacy