# Fall 2020 MBA Calculus Courses - Distance Calculus @ Roger Williams University

The Fall 2020 MBA Calculus Courses via Distance Calculus @ Roger Williams University is best described as: . Please look at the additional links below for further information, and/or explore the menu links to the left to investigate each course and questions you may have about this educational program.- MBA Calculus Courses Online Course FAST
- MBA Calculus Courses Online Course For Credit, Start Immediately
- MBA Calculus Courses Online Course For Credit Start Today, Finish Quickly
- MBA Calculus Courses Quick Online Course For Credit, Start Immediately
- MBA Calculus Courses Accredited Online Course
- MBA Calculus Courses Fall 2020 Online Course
- MBA Calculus Courses Online Accredited

## Distance Calculus - Student Reviews

*Date Posted: Jan 13, 2020*

Review by: Daniel Marasco

Courses Completed: Multivariable Calculus

Review: This course was more affordable than many, and the flexible format was terrific for me, as I am inclined to work very diligently on tasks on my own. It could be dangerous for a person who requires external discipline more, but it works well for self-starters, allowing you to prioritize when you have other pressing work. I was a full time teacher adding a math certification, and this course allowed me to master the math while working around my teaching schedule and fitting work into moments here and there when I had time. I was able to transfer the credits to Montana State University, Bozeman for my teaching internship program without a hitch. The instructors were all very helpful and patient, even when I failed to see a ridiculously simple solution on one problem after 20 emails back and forth. Overall, I was more pleased with my experience in this class than I was with any of my other 9 courses.

Transferred Credits to: Montana State University, Bozeman

*Date Posted: Sep 20, 2020*

Review by: Genevieve P.

Courses Completed: Applied Calculus

Review: I found out from my grad school after being accepted that I needed a Calculus course before starting their MBA program. I had less than 6 weeks to do it (and as a non-STEM undergrad no less). The video lectures were informative, the pre-calc refresher was great to get re-conditioned, and the asynchronous format worked so well as I did this at night/weekends after work. I completed it in 4 weeks. Professor Curtis was extremely responsive, graded assignments quickly, and a supportive guide providing constructive feedback to me to excel at the assignments. I highly recommend this course for those who need a pre-req in a hurry or like learning on their own schedule. Thanks, Distance Calculus and Professor Curtis!

Transferred Credits to: Massachusetts Institute of Technology (MIT)

*Date Posted: May 3, 2018*

Review by: James Holland

Courses Completed: Calculus I, Calculus II

Review: I needed to finish the Business Calculus course very very very fast before my MBA degree at Wharton started. With the AWESOME help of Diane, I finished the course in about 3 weeks, allowing me to start Wharton on time. Thanks Diane!

Transferred Credits to: Wharton School of Business, University of Pennsylvania

## Distance Calculus - Curriculum Exploration

### 1.03: Growth Rates

- M3: 1.03: Growth Rates:
- M3.1: 1.03 - Basics
- M3.1.a: 1.03.B1: Instantaneous growth rates
- M3.1.b: 1.03.B2: Instantaneous Growth Rate of Power Functions
- M3.1.c: 1.03.B3: The Instantaneous Growth Rate of Trig Functions
- M3.1.d: 1.03.B4: The Instantaneous Growth Rate of Exponential and Log Functions
- M3.2: 1.03 - Tutorials
- M3.2.a: 1.03.T1: Average growth rate versus instantaneous growth rate
- M3.2.b: 1.03.T2: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.2.c: 1.03.T3: Spread of disease
- M3.2.d: 1.03.T4: Instantaneous growth rates in context
- M3.3: 1.03 - GiveItATry
- M3.3.a: 1.03.G1: Relating f(x) and f'(x)
- M3.3.b: 1.03.G2: Explaining LiveMath Derivative Output
- M3.3.c: 1.03.G3: Approximation of the instantaneous growth rate f'(x) by average growth rates
- M3.3.d: 1.03.G4: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.3.e: 1.03.G5: Graphics action
- M3.3.f: 1.03.G6: Up and down, maximum and minimum
- M3.3.g: 1.03.G7: Spread of disease
- M3.3.h: 1.03.G8: Average growth rate versus instantaneous growth rate
- M3.3.i: 1.03.G9: Why folks study the instantaneous growth rate instead of instantaneous growth
- M3.4: 1.03 - Literacy
- M3.5: 1.03 - Revisited