# MBA Calculus Courses - Distance Calculus @ Roger Williams University Enroll Today, Finish Quickly - Calculus Academic Credits

MBA Calculus Courses course via Distance Calculus @ Roger Williams University starts whenever you are ready! Enroll today, start your course today, finish your course as quickly as your academic skills allow.For many students with strong academic skills and backgrounds, some courses can be finished in as quickly as a few weeks!

Or, take a more relaxed approach - you can take up to 1 year to finish your course.

Why stress out with due dates and course structures that are incompatable with your life and work schedule? Why force yourself to attend classroom lectures on a weekly basis when you can take your calculus course online on your timeline!

Here is a video about how FAST you can potentially complete your Calculus course from Distance Calculus @ Roger Williams University:

## Distance Calculus - Student Reviews

*Date Posted: Jan 13, 2020*

Review by: Daniel Marasco

Courses Completed: Multivariable Calculus

Review: This course was more affordable than many, and the flexible format was terrific for me, as I am inclined to work very diligently on tasks on my own. It could be dangerous for a person who requires external discipline more, but it works well for self-starters, allowing you to prioritize when you have other pressing work. I was a full time teacher adding a math certification, and this course allowed me to master the math while working around my teaching schedule and fitting work into moments here and there when I had time. I was able to transfer the credits to Montana State University, Bozeman for my teaching internship program without a hitch. The instructors were all very helpful and patient, even when I failed to see a ridiculously simple solution on one problem after 20 emails back and forth. Overall, I was more pleased with my experience in this class than I was with any of my other 9 courses.

Transferred Credits to: Montana State University, Bozeman

*Date Posted: Jan 12, 2020*

Review by: Anonymous

Courses Completed: Calculus I

Review: This course is amazing! I took it as a requirement for admission to an MBA program, and couldn't have been happier with the quality and rigor of the course. I previously took calculus two times (at a public high school and then a large public university commonly cited as a "public ivy"), this course was by far the best and *finally* made the concepts click. Previously I had no idea what was going on because terrible PhD students were teaching the course and saying stuff like "a derivative is the slope of a tangent line" - ??? but what does that mean ???, but the instructors in the Shorter University course explain everything in ways where it FINALLY made sense (e.g., "imagine a roller coaster hitting the top of a hill, there's a moment where it shifts momentum and you're not accelerating or decelerating, that's what a 0 rate of change is - that's when the derivative would be zero"). They explain everything in multiple ways and relate it to other concepts. It all made perfect sense when I finally had a good instructor. Really recommend this class

Transferred Credits to: The Wharton School, UPenn

*Date Posted: Sep 6, 2020*

Review by: Mark L.

Courses Completed: Applied Calculus

Review: Great course. Because of this class I was able to meet the entry requirements for my EMBA program on a tight time window in addition to sharpening math skills from classes taken over 15 years ago!

Transferred Credits to: MIT

## Distance Calculus - Curriculum Exploration

### 1.07: Races

- M7: 1.07: Races:
- M7.1: 1.07 - Basics
- M7.1.a: 1.07.B1: The Race Track Principle
- M7.1.b: 1.07.B2: The Race Track Principle and differential equations
- M7.1.c: 1.07.B3: The Race Track Principle and Euler's method of faking the plot of the solution of a differential equation
- M7.1.d: 1.07.B4: Tangent lines and the Race Track Principle
- M7.2: 1.07 - Tutorials
- M7.2.a: 1.07.T1: Using Euler's method to fake the plot of f(x) given f ' (x) and one value of f(x)
- M7.2.b: 1.07.T2: Using the Race Track Principle to help to estimate roundoff error
- M7.2.c: 1.07.T3: If f''(x) is always positive then tangent lines run below the curve
- M7.3: 1.07 - Give It a Try
- M7.3.a: 1.07.G1: Versions of the Race Track Principle
- M7.3.b: 1.07.G2: Running Euler's faker
- M7.3.c: 1.07.G3: The Race Track Principle and differential equations
- M7.3.d: 1.07.G4: The error function Erf(x)
- M7.3.e: 1.07.G5: Round off
- M7.3.f: 1.07.G6: Calculating accurate values of ln(x)
- M7.3.g: 1.07.G7: Calculating accurate values of e^x
- M7.3.h: 1.07.G8: Euler's faker and the second derivative
- M7.3.i: 1.07.G9: Inequalities
- M7.3.j: 1.07.G10: The Law of the Mean
- M7.3.k: 1.07.G11: If f''(x) is never positive then tangent lines run above the curve; At points of inflection, the tangent line crosses the curve
- M7.4: 1.07 - Literacy