# Calculus 4 Fast for Academic Credits

Unable to "wait for the next academic semester" to complete a Calculus 4 course? Distance Calculus @ Roger Williams University has you covered!Need to finish your Calculus 4 course as fast as possible? Distance Calculus is ready for you.

Distance Calculus is designed to get you enrolled in Calculus 4 immediately, and to have you finish the course as quickly as your academic skills allow.

Each Calculus course is different, some are more difficult and longer than others. But depending upon which Distance Calculus course, you could finish your course in a matter of weeks. It all depends upon your academic skills - some students are able to go lightning fast through the courses, some students need more time. Our only rule is that you go through the courses CORRECTLY and learn the material in our mastery learning format at 100% completion.

Our Distance Calculus courses are designed to be asynchronous - a fancy term for "self-paced" - but it more than just self-paced - it is all about working on your timeline, and going either as slow as you need to, or as fast as your academic skills allow.

Many students need a Calculus 4 course completed on the fast track - because time is critical in finishing calculus courses needed for academic prerequisites and graduate school applications.

Here is a video about earning real academic credits from Distance Calculus @ Roger Williams University:

## Distance Calculus - Student Reviews

*Date Posted: Jan 19, 2020*

Review by: William Williams

Student Email: wf.williamster@gmail.com

Courses Completed: Linear Algebra, Probability Theory

Review: I have difficulty learning calculus based math, akin to dyslexia when examining the symbolic forms, equations, definitions, and problems. Mathematica based calculus courses allowed me to continue with my studies because of the option of seeing the math expressed as a programming language for which I have no difficulty in interpreting visually and the immediate feedback of graphical representations of functions, equations, or data makes a huge impact on understanding. Mathematica based calculus courses should be the default method of teaching Calculus everywhere.

Transferred Credits to: Thomas Edison State College

*Date Posted: Apr 5, 2020*

Review by: Catherine M.

Courses Completed: Calculus I

Review: Calculus I from Distance Calculus was wonderful! I took AB Calculus in high school, but I didn't take the AP Calc exam. Instead I took Calculus I with Distance Calculus, and it was so much better! It was a little review of topics, but not really. I really understood calculus when I finished!

Transferred Credits to: University of Chicago

*Date Posted: Apr 13, 2020*

Review by: Jorgen M.

Courses Completed: Calculus I

Review: I really enjoyed this course, much more than I thought I would. I needed to finish this course very fast before starting my graduate degree program @ Kellogg. I was able to finish in 3 weeks. I liked the video lectures and the homework process. I highly recommend this course.

Transferred Credits to: Kellogg School of Business, Northwestern Univ

## Distance Calculus - Curriculum Exploration

### VC.03 - Gradient

- V3: VC.03 - Gradient:
- V3.1: VC.03 - Basics
- V3.1.a: VC.03.B1: The gradient and the chain rule
- V3.1.b: VC.03.B2: Level curves, level surfaces and the gradient as normal vector
- V3.1.c: VC.03.B3: The gradient points in the direction of greatest initial increase
- V3.1.d: VC.03.B4: Using linearizations to help to explain the chain rule
- V3.2: VC.03 - Tutorials
- V3.2.a: VC.03.T1: The total differential
- V3.2.b: VC.03.T2: What's the chain rule good for?
- V3.2.c: VC.03.T3: The gradient and maximization and minimization
- V3.2.d: VC.03.T4: Eye-balling a function for max-min
- V3.2.e: VC.03.T5: Data fit
- V3.2.f: VC.03.T6: Lagrange's method for constrained maximization and minimization
- V3.3: VC.03 - Give It a Try
- V3.3.a: VC.03.G1: The gradient points in the direction of greatest initial increase
- V3.3.b: VC.03.G2: The gradient is perpendicular to the level curves and surfaces
- V3.3.c: VC.03.G3: The heat seeker
- V3.3.d: VC.03.G4: Doing 'em by hand
- V3.3.e: VC.03.G5: The highest crests and the deepest dips
- V3.3.f: VC.03.G6: Closest points, gradients and Lagrange's method
- V3.3.g: VC.03.G7: The Cobb-Douglas manufacturing model for industrial engineering
- V3.3.h: VC.03.G8: Data Fit in two variables: Plucking a guitar string
- V3.3.i: VC.03.G9: Linearizations and total differentials
- V3.3.j: VC.03.G10: Keeping track of constituent costs
- V3.3.k: VC.03.G11: The great pretender
- V3.3.l: VC.01.G1-A: Another Help Movie
- V3.3.m: VC.01.G1-B: Another Help Movie
- V3.3.n: VC.01.G1-C: Yet Another Help Movie
- V3.3.o: VC.03.G2.c Hint
- V3.4: VC.03 - Literacy
- V3.5: VC.03 - Revisited
- V3.5.a: VC.03.B1 - Revisited
- V3.5.b: VC.03.B2 - Revisited
- V3.5.c: VC.03.B3 - Revisited
- V3.5.d: VC.03.T1 - Revisited
- V3.5.e: VC.03.T2 - Revisited
- V3.5.f: VC.03.T3 - Revisited
- V3.5.g: VC.03.T4 - Revisited
- V3.5.h: VC.03.T6 - Revisited
- V3.5.i: VC.03.G1.b.i - Revisited
- V3.5.j: VC.03.G1.d.i - Revisited
- V3.5.k: VC.03.G1.d.ii - Revisited
- V3.5.l: VC.03.G2.c - Revisited