# MBA Calculus Courses - Distance Calculus @ Roger Williams University from Distance Calculus

MBA students seeking to fulfill their calculus requirement may do so via our Applied Calculus - Math 207 - 3 credit course - which is very popular with MBA-bound students.

Even if your MBA school does not require Calculus, your enrollment application to your MBA school will look stronger with more Calculus courses on your academic transcripts.

For most MBA students, a single course like Applied Calculus will suffice.

For those students planning to go to very strongly mathematical MBA program (e.g. Sloan School of Management at MIT), you will actually need to take the ENTIRE Engineering Calculus sequence!

Please explore these links below that describe more about the types of calculus courses you may wish to take before applying for MBA school, or other graduate programs that historically require Calculus and/or more mathematics prerequisites.

Distance Calculus @ Roger Williams University offers all of the main lower-division university-level calculus courses.

- Math 136 - Precalculus - 4 credits
- Math 207 - Applied Calculus - 3 credits
- Math 213 - Calculus I - 4 credits
- Math 214 - Calculus II - 4 credits
- Math 351 - Multivariable Calculus - 4 credits
- Math 317 - Differential Equations - 3 credits
- Math 331 - Linear Algebra - 3 credits
- Math 315 - Probability Theory - 3 credits

- MBA Programs @ MIT + Distance Calculus
- MBA Business Calculus Fast
- MBA Business Calculus Fast Track
- MBA Calculus Courses Online Course FAST
- MBA Calculus Courses Online Course For Credit Start Immediately
- MBA Calculus Courses Online Course For Credit Start Today, Finish Quickly
- MBA Calculus Courses Quick Online Course For Credit Start Immediately
- MBA Calculus Courses Accredited Online Course
- MBA Calculus Courses Summer 2020 Online Course
- MBA Calculus Courses Summer Course
- MBA Calculus Courses Fall 2020 Online Course
- MBA Calculus Courses Fall Course
- MBA Calculus Courses Online Accredited

## Distance Calculus - Student Reviews

*Date Posted: Apr 29, 2020*

Review by: Harlan E.

Courses Completed: Calculus I, Calculus II

Review: I did not do well in AP Calculus during my senior year in high school. Instead of trying to cram for the AP exam, I decided to jump ship and go to Distance Calculus to complete Calculus I. This was awesome! I finished Calculus I in about 6 weeks, and then I kept going into Calculus II. I started as a freshman at UCLA with both Calculus I and II done!

Transferred Credits to: University of California, Los Angeles

*Date Posted: Apr 29, 2020*

Review by: Harlan E.

Courses Completed: Calculus I, Calculus II

Review: I did not do well in AP Calculus during my senior year in high school. Instead of trying to cram for the AP exam, I decided to jump ship and go to Distance Calculus to complete Calculus I. This was awesome! I finished Calculus I in about 6 weeks, and then I kept going into Calculus II. I started as a freshman at UCLA with both Calculus I and II done!

Transferred Credits to: University of California, Los Angeles

*Date Posted: Apr 6, 2020*

Review by: Paul Simmons

Courses Completed: Multivariable Calculus, Differential Equations

Review: I took Multivariable and Diff Eq during the summer. The DiffEq course was awesome - very useful for my physics and engineering course. I was unsure about Mathematica at first, but I got the hang of it quickly. Thank you Distance Calculus!

Transferred Credits to: University of Oregon

## Distance Calculus - Curriculum Exploration

### 1.03: Growth Rates

- M3: 1.03: Growth Rates:
- M3.1: 1.03 - Basics
- M3.1.a: 1.03.B1: Instantaneous growth rates
- M3.1.b: 1.03.B2: Instantaneous Growth Rate of Power Functions
- M3.1.c: 1.03.B3: The Instantaneous Growth Rate of Trig Functions
- M3.1.d: 1.03.B4: The Instantaneous Growth Rate of Exponential and Log Functions
- M3.2: 1.03 - Tutorials
- M3.2.a: 1.03.T1: Average growth rate versus instantaneous growth rate
- M3.2.b: 1.03.T2: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.2.c: 1.03.T3: Spread of disease
- M3.2.d: 1.03.T4: Instantaneous growth rates in context
- M3.3: 1.03 - GiveItATry
- M3.3.a: 1.03.G1: Relating f(x) and f'(x)
- M3.3.b: 1.03.G2: Explaining LiveMath Derivative Output
- M3.3.c: 1.03.G3: Approximation of the instantaneous growth rate f'(x) by average growth rates
- M3.3.d: 1.03.G4: Using the instantaneous growth rate f'(x) to predict the plot of f(x)
- M3.3.e: 1.03.G5: Graphics action
- M3.3.f: 1.03.G6: Up and down, maximum and minimum
- M3.3.g: 1.03.G7: Spread of disease
- M3.3.h: 1.03.G8: Average growth rate versus instantaneous growth rate
- M3.3.i: 1.03.G9: Why folks study the instantaneous growth rate instead of instantaneous growth
- M3.4: 1.03 - Literacy
- M3.5: 1.03 - Revisited