# Summer 2020 Enroll Now, Start Today - Calculus III Academic Credits

Summer 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: Apr 30, 2020*

Review by: Hannah J.

Courses Completed: Probability Theory

Review: Probability Theory was a great course. Very very thorough. I thought it would never end :). I was very prepared for my coursework in economics. Excellent refereshher of derivatives and integrals - really forced me to remember that stuff from freshman cal.

Transferred Credits to: Boston University

*Date Posted: Mar 16, 2020*

Review by: Malia K.

Courses Completed: Applied Calculus

Review: Course was good and fast. I don't like math so I can't say it was fun or anything. Grader was very nice. Software was ok.

Transferred Credits to: University of Maine

*Date Posted: Sep 20, 2020*

Review by: Genevieve P.

Courses Completed: Applied Calculus

Review: I found out from my grad school after being accepted that I needed a Calculus course before starting their MBA program. I had less than 6 weeks to do it (and as a non-STEM undergrad no less). The video lectures were informative, the pre-calc refresher was great to get re-conditioned, and the asynchronous format worked so well as I did this at night/weekends after work. I completed it in 4 weeks. Professor Curtis was extremely responsive, graded assignments quickly, and a supportive guide providing constructive feedback to me to excel at the assignments. I highly recommend this course for those who need a pre-req in a hurry or like learning on their own schedule. Thanks, Distance Calculus and Professor Curtis!

Transferred Credits to: Massachusetts Institute of Technology (MIT)

## Distance Calculus - Curriculum Exploration

### VC.04 - Trajectories

- V4: VC.04 - Trajectories:
- V4.1: VC.04 - Basics
- V4.1.a: VC.04.B1: Vector fields and their trajectories
- V4.1.b: VC.04.B2: Flow of vector fields along curves; flow of vector fields across curves: Visual inspection
- V4.1.c: VC.04.B3: Flow of vector fields along curves; flow of vector fields across curves
- V4.2: VC.04 - Tutorials
- V4.2.a: VC.04.T1: Flow across and flow along: Visual inspection
- V4.2.b: VC.04.T2: Differential equations and and their associated vector fields
- V4.2.c: VC.04.T3: Flow across and along a curve and the sign of the dot product
- V4.2.d: VC.04.T4: The 2D electric field
- V4.2.e: VC.04.T5: Troubleshooting plots of vector fields
- V4.3: VC.04 - Give It a Try
- V4.3.a: VC.04.G1: Looking for sinks (drains)
- V4.3.b: VC.04.G2: Flow along and flow across
- V4.3.c: VC.04.G3: Normals, tangents and dot plots
- V4.3.d: VC.04.G4: The most important vector field of them all: The gradient field
- V4.3.e: VC.04.G5: Differential equations and their associated vector fields
- V4.3.f: VC.04.G6: Trajectories: Can they cross?
- V4.3.g: VC.04.G7: Drifting along with a tumbleweed
- V4.3.h: VC.04.G8: Logistic harvesting revisited
- V4.3.i: VC.04.G9: Water flow with spigots and drains
- V4.3.j: VC.04.G10: 2D Electrical fields
- V4.3.k: VC.04.G11: Gradient fields for max-min, Hamiltonian fields for level curves, and implicitly defined functions
- V4.4: VC.04 - Literacy