# Summer 2020 Multivariable Calculus Accredited Calculus Academic Credits

Summer 2020 @ Roger Williams University## Distance Calculus - Student Reviews

*Date Posted: Feb 28, 2020*

Review by: Teddy M.

Courses Completed: Precalculus, Calculus I

Review: Pros: once you get going, you can go really fast. The visual textbook is pretty cool. The instructors were very responsive. Cons: the movies are great, but the software crashes more than it should. Sometimes it is just a hassle doing things in the software instead of on paper, but once I got used to the software, it was ok.

Transferred Credits to: Texas Christian University

*Date Posted: Feb 28, 2020*

Review by: Teddy M.

Courses Completed: Precalculus, Calculus I

Review: Pros: once you get going, you can go really fast. The visual textbook is pretty cool. The instructors were very responsive. Cons: the movies are great, but the software crashes more than it should. Sometimes it is just a hassle doing things in the software instead of on paper, but once I got used to the software, it was ok.

Transferred Credits to: Texas Christian University

*Date Posted: Jun 21, 2020*

Review by: Abdul J.

Courses Completed: Applied Calculus

Review: This was the best class! So much more interesting doing the computer math than a boring lecture class. Diane was so responsive and helpful. I recommend this course.

Transferred Credits to: Villanova University

## Distance Calculus - Curriculum Exploration

### VC.04 - Trajectories

- V4: VC.04 - Trajectories:
- V4.1: VC.04 - Basics
- V4.1.a: VC.04.B1: Vector fields and their trajectories
- V4.1.b: VC.04.B2: Flow of vector fields along curves; flow of vector fields across curves: Visual inspection
- V4.1.c: VC.04.B3: Flow of vector fields along curves; flow of vector fields across curves
- V4.2: VC.04 - Tutorials
- V4.2.a: VC.04.T1: Flow across and flow along: Visual inspection
- V4.2.b: VC.04.T2: Differential equations and and their associated vector fields
- V4.2.c: VC.04.T3: Flow across and along a curve and the sign of the dot product
- V4.2.d: VC.04.T4: The 2D electric field
- V4.2.e: VC.04.T5: Troubleshooting plots of vector fields
- V4.3: VC.04 - Give It a Try
- V4.3.a: VC.04.G1: Looking for sinks (drains)
- V4.3.b: VC.04.G2: Flow along and flow across
- V4.3.c: VC.04.G3: Normals, tangents and dot plots
- V4.3.d: VC.04.G4: The most important vector field of them all: The gradient field
- V4.3.e: VC.04.G5: Differential equations and their associated vector fields
- V4.3.f: VC.04.G6: Trajectories: Can they cross?
- V4.3.g: VC.04.G7: Drifting along with a tumbleweed
- V4.3.h: VC.04.G8: Logistic harvesting revisited
- V4.3.i: VC.04.G9: Water flow with spigots and drains
- V4.3.j: VC.04.G10: 2D Electrical fields
- V4.3.k: VC.04.G11: Gradient fields for max-min, Hamiltonian fields for level curves, and implicitly defined functions
- V4.4: VC.04 - Literacy