# Summer 2020 Enroll Now, Start Today - Multivariable Calculus Academic Credits

Summer 2020 @ Roger Williams UniversityUnable to "wait for the next academic semester"? Summer 2020 Distance Calculus @ Roger Williams University has you covered!

Our Summer 2020 Distance Calculus courses are designed to be asynchronous - a fancy term for "self-paced" - but it more than just self-paced - it is all about working on your timeline, and going either as slow as you need to, or as fast as your academic skills allow.

Many students need a Calculus course completed on the fast track - because time is critical in finishing calculus courses needed for academic prerequisites and graduate school applications.

Here is a video about earning real academic credits from Summer 2020 Distance Calculus @ Roger Williams University:

## Distance Calculus - Student Reviews

*Date Posted: Feb 23, 2020*

Review by: Carl Conners

Courses Completed: Multivariable Calculus, Differential Equations, Linear Algebra

Review: After a really rough first year of calculus, I completed all of the second year calculus courses with Distance Calculus. It was like night and day the difference. My first year was so boring and monotonous. Multivariable Calculus, Differential Equations, and Linear Algebra through Distance Calculus were just so much different - so not boring at all. I thoroughly enjoyed these courses. So engaging.

Transferred Credits to: Michigan State University

*Date Posted: Apr 6, 2020*

Review by: Paul Simmons

Courses Completed: Multivariable Calculus, Differential Equations

Review: I took Multivariable and Diff Eq during the summer. The DiffEq course was awesome - very useful for my physics and engineering course. I was unsure about Mathematica at first, but I got the hang of it quickly. Thank you Distance Calculus!

Transferred Credits to: University of Oregon

*Date Posted: Mar 17, 2020*

Review by: Rebecca M.

Courses Completed: Calculus II, Multivariable Calculus

Review: Fantastic courses! I barely made it through Cal 1, and halfway through Cal 2 I found this program. I took Cal 2 and then Multivariable and I just loved it! SOOOOOOO much better than a classroom+textbook class. I highly recommend!

Transferred Credits to: Tulane University

## Distance Calculus - Curriculum Exploration

### VC.03 - Gradient

- V3: VC.03 - Gradient:
- V3.1: VC.03 - Basics
- V3.1.a: VC.03.B1: The gradient and the chain rule
- V3.1.b: VC.03.B2: Level curves, level surfaces and the gradient as normal vector
- V3.1.c: VC.03.B3: The gradient points in the direction of greatest initial increase
- V3.1.d: VC.03.B4: Using linearizations to help to explain the chain rule
- V3.2: VC.03 - Tutorials
- V3.2.a: VC.03.T1: The total differential
- V3.2.b: VC.03.T2: What's the chain rule good for?
- V3.2.c: VC.03.T3: The gradient and maximization and minimization
- V3.2.d: VC.03.T4: Eye-balling a function for max-min
- V3.2.e: VC.03.T5: Data fit
- V3.2.f: VC.03.T6: Lagrange's method for constrained maximization and minimization
- V3.3: VC.03 - Give It a Try
- V3.3.a: VC.03.G1: The gradient points in the direction of greatest initial increase
- V3.3.b: VC.03.G2: The gradient is perpendicular to the level curves and surfaces
- V3.3.c: VC.03.G3: The heat seeker
- V3.3.d: VC.03.G4: Doing 'em by hand
- V3.3.e: VC.03.G5: The highest crests and the deepest dips
- V3.3.f: VC.03.G6: Closest points, gradients and Lagrange's method
- V3.3.g: VC.03.G7: The Cobb-Douglas manufacturing model for industrial engineering
- V3.3.h: VC.03.G8: Data Fit in two variables: Plucking a guitar string
- V3.3.i: VC.03.G9: Linearizations and total differentials
- V3.3.j: VC.03.G10: Keeping track of constituent costs
- V3.3.k: VC.03.G11: The great pretender
- V3.3.l: VC.01.G1-A: Another Help Movie
- V3.3.m: VC.01.G1-B: Another Help Movie
- V3.3.n: VC.01.G1-C: Yet Another Help Movie
- V3.3.o: VC.03.G2.c Hint
- V3.4: VC.03 - Literacy
- V3.5: VC.03 - Revisited
- V3.5.a: VC.03.B1 - Revisited
- V3.5.b: VC.03.B2 - Revisited
- V3.5.c: VC.03.B3 - Revisited
- V3.5.d: VC.03.T1 - Revisited
- V3.5.e: VC.03.T2 - Revisited
- V3.5.f: VC.03.T3 - Revisited
- V3.5.g: VC.03.T4 - Revisited
- V3.5.h: VC.03.T6 - Revisited
- V3.5.i: VC.03.G1.b.i - Revisited
- V3.5.j: VC.03.G1.d.i - Revisited
- V3.5.k: VC.03.G1.d.ii - Revisited
- V3.5.l: VC.03.G2.c - Revisited