# Do You Need Multivariable Calculus Before Linear Algebra - Distance Calculus

Short answer: No, you do not need to take Multivariable Calculus before you take Linear Algebra.You may take these course concurrently. They do not share any course material at all.

We recommend to students that they consider completing Multivariable Calculus first, then engaging Linear Algebra, but it is not at all necessary to complete these courses in that order. Many students find great success by taking both courses together, or taking Linear Algebra first, then completing Multivariable Calculus.

Some students appreciate the "cognitive break" that Linear Algebra provides from the study of calculus, and returing to Multivariable Calculus after completing Linear Algebra is sometimes a nice walk through the sophomore level subjects.

Here are some videos to explore our Multivariable Calculus and Linear Algebra courses.

## Linear Algebra Course Introduction

## Multivariable Course

## Calculus 2 Introduction

## Distance Calculus - Student Reviews

*Date Posted: Apr 10, 2020*

Review by: Benjamin T.

Courses Completed: Calculus I

Review: This course provided an excellent chance to learn about Calculus...again. I took calculus in high school, but I learned so much more with this course! It does take a good amount of time to do all the lessons, so definitely keep on top of them, but all the exercises helped me to really understand the material. And the nice thing is you can do it on your own time at home.

Transferred Credits to: Western University of Health Sciences: College of Optometry

*Date Posted: Dec 20, 2019*

Review by: Bill K.

Courses Completed: Calculus I, Calculus II, Multivariable Calculus, Linear Algebra

Review: I took the whole calculus series and Linear Algebra via Distance Calculus. Dr. Curtis spent countless hours messaging back and forth with me, answering every question, no matter how trivial they might seem. Dr. Curtis is extremely responsive, especially if the student is curious and is willing to work hard. I don't think I ever waited much more than a day for Dr. Curtis to get a notebook back to me. Dr. Curtis would also make videos of concepts if I was really lost. The course materials are fantastic. If you are a student sitting on the fence, trying to decide between a normal classroom class or Distance Calculus classes with Livemath and Mathematica, my choice would be the Distance Calculus classes every time. The Distance Calculus classes are more engaging. The visual aspects of the class notebooks are awesome. You get the hand calculation skills you need. The best summary I can give is to say, given the opportunity, I would put my own son's math education in Dr. Curtis's hands.

Transferred Credits to: None

*Date Posted: Jul 25, 2020*

Review by: Michael Linton

Student Email: mdl264@cornell.edu

Courses Completed: Calculus I

Review: Amazing professor, extremely helpful and graded assignments quickly. To any Cornellians out there, this is the Calculus Course to take in Summer to fulfill your reqs! I would definitely take more Calculus Classes this way in the future!

Transferred Credits to: Cornell University

## Distance Calculus - Curriculum Exploration

### VC.03 - Gradient

- V3: VC.03 - Gradient:
- V3.1: VC.03 - Basics
- V3.1.a: VC.03.B1: The gradient and the chain rule
- V3.1.b: VC.03.B2: Level curves, level surfaces and the gradient as normal vector
- V3.1.c: VC.03.B3: The gradient points in the direction of greatest initial increase
- V3.1.d: VC.03.B4: Using linearizations to help to explain the chain rule
- V3.2: VC.03 - Tutorials
- V3.2.a: VC.03.T1: The total differential
- V3.2.b: VC.03.T2: What's the chain rule good for?
- V3.2.c: VC.03.T3: The gradient and maximization and minimization
- V3.2.d: VC.03.T4: Eye-balling a function for max-min
- V3.2.e: VC.03.T5: Data fit
- V3.2.f: VC.03.T6: Lagrange's method for constrained maximization and minimization
- V3.3: VC.03 - Give It a Try
- V3.3.a: VC.03.G1: The gradient points in the direction of greatest initial increase
- V3.3.b: VC.03.G2: The gradient is perpendicular to the level curves and surfaces
- V3.3.c: VC.03.G3: The heat seeker
- V3.3.d: VC.03.G4: Doing 'em by hand
- V3.3.e: VC.03.G5: The highest crests and the deepest dips
- V3.3.f: VC.03.G6: Closest points, gradients and Lagrange's method
- V3.3.g: VC.03.G7: The Cobb-Douglas manufacturing model for industrial engineering
- V3.3.h: VC.03.G8: Data Fit in two variables: Plucking a guitar string
- V3.3.i: VC.03.G9: Linearizations and total differentials
- V3.3.j: VC.03.G10: Keeping track of constituent costs
- V3.3.k: VC.03.G11: The great pretender
- V3.3.l: VC.01.G1-A: Another Help Movie
- V3.3.m: VC.01.G1-B: Another Help Movie
- V3.3.n: VC.01.G1-C: Yet Another Help Movie
- V3.3.o: VC.03.G2.c Hint
- V3.4: VC.03 - Literacy
- V3.5: VC.03 - Revisited
- V3.5.a: VC.03.B1 - Revisited
- V3.5.b: VC.03.B2 - Revisited
- V3.5.c: VC.03.B3 - Revisited
- V3.5.d: VC.03.T1 - Revisited
- V3.5.e: VC.03.T2 - Revisited
- V3.5.f: VC.03.T3 - Revisited
- V3.5.g: VC.03.T4 - Revisited
- V3.5.h: VC.03.T6 - Revisited
- V3.5.i: VC.03.G1.b.i - Revisited
- V3.5.j: VC.03.G1.d.i - Revisited
- V3.5.k: VC.03.G1.d.ii - Revisited
- V3.5.l: VC.03.G2.c - Revisited