# Do You Need Multivariable Calculus Before Linear Algebra - Distance Calculus

Short answer: No, you do not need to take Multivariable Calculus before you take Linear Algebra.You may take these course concurrently. They do not share any course material at all.

We recommend to students that they consider completing Multivariable Calculus first, then engaging Linear Algebra, but it is not at all necessary to complete these courses in that order. Many students find great success by taking both courses together, or taking Linear Algebra first, then completing Multivariable Calculus.

Some students appreciate the "cognitive break" that Linear Algebra provides from the study of calculus, and returing to Multivariable Calculus after completing Linear Algebra is sometimes a nice walk through the sophomore level subjects.

Here are some videos to explore our Multivariable Calculus and Linear Algebra courses.

## Linear Algebra Course Introduction

## Multivariable Course

## Calculus 2 Introduction

## Distance Calculus - Student Reviews

*Date Posted: Jun 6, 2020*

Review by: Douglas Z.

Courses Completed: Multivariable Calculus, Differential Equations, Linear Algebra, Probability Theory

Review: I loved these courses. So in depth and comprehensive. The mix of software and math curriculum was tremendously helpful to my future studies and career in engineering. I highly recommend these courses if you are bored of textbook courses.

Transferred Credits to: University of Massachusetts, Amherst

*Date Posted: Mar 17, 2020*

Review by: Rebecca M.

Courses Completed: Calculus II, Multivariable Calculus

Review: Fantastic courses! I barely made it through Cal 1, and halfway through Cal 2 I found this program. I took Cal 2 and then Multivariable and I just loved it! SOOOOOOO much better than a classroom+textbook class. I highly recommend!

Transferred Credits to: Tulane University

*Date Posted: Sep 6, 2020*

Review by: Mark L.

Courses Completed: Applied Calculus

Review: Great course. Because of this class I was able to meet the entry requirements for my EMBA program on a tight time window in addition to sharpening math skills from classes taken over 15 years ago!

Transferred Credits to: MIT

## Distance Calculus - Curriculum Exploration

### VC.03 - Gradient

- V3: VC.03 - Gradient:
- V3.1: VC.03 - Basics
- V3.1.a: VC.03.B1: The gradient and the chain rule
- V3.1.b: VC.03.B2: Level curves, level surfaces and the gradient as normal vector
- V3.1.c: VC.03.B3: The gradient points in the direction of greatest initial increase
- V3.1.d: VC.03.B4: Using linearizations to help to explain the chain rule
- V3.2: VC.03 - Tutorials
- V3.2.a: VC.03.T1: The total differential
- V3.2.b: VC.03.T2: What's the chain rule good for?
- V3.2.c: VC.03.T3: The gradient and maximization and minimization
- V3.2.d: VC.03.T4: Eye-balling a function for max-min
- V3.2.e: VC.03.T5: Data fit
- V3.2.f: VC.03.T6: Lagrange's method for constrained maximization and minimization
- V3.3: VC.03 - Give It a Try
- V3.3.a: VC.03.G1: The gradient points in the direction of greatest initial increase
- V3.3.b: VC.03.G2: The gradient is perpendicular to the level curves and surfaces
- V3.3.c: VC.03.G3: The heat seeker
- V3.3.d: VC.03.G4: Doing 'em by hand
- V3.3.e: VC.03.G5: The highest crests and the deepest dips
- V3.3.f: VC.03.G6: Closest points, gradients and Lagrange's method
- V3.3.g: VC.03.G7: The Cobb-Douglas manufacturing model for industrial engineering
- V3.3.h: VC.03.G8: Data Fit in two variables: Plucking a guitar string
- V3.3.i: VC.03.G9: Linearizations and total differentials
- V3.3.j: VC.03.G10: Keeping track of constituent costs
- V3.3.k: VC.03.G11: The great pretender
- V3.3.l: VC.01.G1-A: Another Help Movie
- V3.3.m: VC.01.G1-B: Another Help Movie
- V3.3.n: VC.01.G1-C: Yet Another Help Movie
- V3.3.o: VC.03.G2.c Hint
- V3.4: VC.03 - Literacy
- V3.5: VC.03 - Revisited
- V3.5.a: VC.03.B1 - Revisited
- V3.5.b: VC.03.B2 - Revisited
- V3.5.c: VC.03.B3 - Revisited
- V3.5.d: VC.03.T1 - Revisited
- V3.5.e: VC.03.T2 - Revisited
- V3.5.f: VC.03.T3 - Revisited
- V3.5.g: VC.03.T4 - Revisited
- V3.5.h: VC.03.T6 - Revisited
- V3.5.i: VC.03.G1.b.i - Revisited
- V3.5.j: VC.03.G1.d.i - Revisited
- V3.5.k: VC.03.G1.d.ii - Revisited
- V3.5.l: VC.03.G2.c - Revisited